
Adobe Flex

Enhanced Flash 8 Video Features:

• New VP6 codec delivers higher quality video
at the same bit rate

• 8-bit alpha channel transparency enables
you to blend video with other elements

• Improved live video capabilities

VitalStream Complete
Toolset for Flash:

• MediaConsole®
• MediaOps™ SDK
• Flash Authentication
• Reporting Dashboard

Stay Ahead of the Competition With VitalStream
and the Enhanced Video Features in Flash 8

Call (800) 254-7554
Visit www.vitalstream.com

With over two years of experience in delivering much of today’s most popular media, VitalStream® is the
first and most experienced Flash™ video streaming service provider.

© 2000 - 2005 VitalStream, Inc. All rights reserved.

Take Advantage of the Enhanced Video Features in Macromedia Flash 8
Call (800) 254-7554 or Download Tutorials at www.vitalstream.com/go/mxdj

Integrate Streaming Media
Into Your Flash Projects

march 2006

36 Director and SCORM 1.3
SCORM SCO Presentation
Engine (S2PE)
Sharable Content Object
Reference Model
by kraig mentor

3 • 2006� • mxdj.com

Adobe Flex42 Developing Flex
RIAs with Cairngorm
Microarchitecture
Using the Cairngorm
sample application
by steven webster

24 Best Practices for Encoding
Video with the VP6 Codec
A simple yet powerful tool for
Flash developers
by william caulfield

28 Designing and Animating
Characters in Flash 8
Versatile workflow and
production process
by chris georgenes

7 Configuring and Testing PHP
Servers for XSL Support
Transformations in a snap
by marius zaharia & cristian ivascu

16 Consuming a Remote RSS 1.0
Feed with Dreamweaver 8
XML and XSL-based web projects
by marius zaharia

he major breakthrough in
Macromedia Dreamweaver 8 is
visual authoring with XML data.

You can now perform both client-side
and server-side XSL transformations in
a snap. I covered XML syntax in one of
my previous articles. I also presented
the XSL syntax and covered the dif-
ferences between a server-side and a
client-side transformation in my article,
XSL Overview. Finally, in the article,
Consuming a Remote RSS Feed with
Dreamweaver 8, I show you how to con-
sume a remote feed in your site, using
the XSL Transformation server behavior
in Dreamweaver 8.
	 This article explains how to install
and configure XML and XSL support for
your web server, in order to be able to
perform server-side XSL transformations.
The article covers the configuration of
PHP application servers—versions 4 and
5—for Windows, Macintosh, and Linux
operating systems.
	 In a server-side XSL transforma-
tion, the server performs the actual
work of producing HTML output using
pre-installed libraries for XML and XSL
support. In a client-side transformation,
however, the client’s browser does the
work of fetching the XML and XSL files
and producing the HTML output. The
downside of this approach is that not
all browsers have XML/XSL support, so
some of your clients might not be able
to see your pages. There are also other
advantages to server-side XSL transfor-
mations:
•	 The file containing the XML data can

reside on your own server or anywhere
else on the web.

•	 Any browser can display the trans-
formed data.

Quickly Testing Your PHP
Server for Server-Side XSL
Transformation Capability
	 Your PHP server may already be set
up to do XSL transformations. You can

quickly test it by following these steps:
•	 Download the sample files linked

below.
•	 Unzip the ZIP file into your web root

and upload the entire xslt_test folder
to your web server running PHP.

	 Open a browser and browse to
the test.php file on your server. If you
receive an error, please continue read-
ing this article. I will show you how
to configure and test your PHP server
for XSL transformations. If the test.
php page returns a list of articles from
the Macromedia Developer Center,
I encourage you to read my article,
Consuming a Remote RSS 1.0 Feed
with Dreamweaver 8, in which I will
show you how to build the test.php
page.

Determining Your PHP
Server Version and Whether
It Supports XSLT
How Do I Know Which PHP Version

I Have?

	 To find out which libraries you need
for performing server-side XSL transfor-
mations, you need to determine which
PHP version is currently running on your
web server. To do that, follow these steps:
•	 Open Dreamweaver.
•	 In a site defined with a testing server,

create an empty PHP page (File >
New).

•	 Switch to Code view.
•	 Inside the body tag, type the following

line of code:
•	 <?php phpinfo() ?>
•	 In your browser, this function will dis-

play detailed information about the
current PHP installation and settings,
modules, libraries, and so on.

•	 Save your page to something like
test.php and upload it to the testing
server.

•	 Load the page in your browser, to see
the results, using F12 (Windows) or
Option + F12 (Macintosh).

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Louis F. Cuffari
Director Editor
Andrew Phelps
Captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Editor	
Nancy Valentine, 201 802-3044
nancy@sys-con.com	

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Megan Mussa
megan@sys-con.com

Copyright © 2006
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish,
and authorize its readers to use the articles
submitted for publication. Macromedia and
Macromedia products are trademarks or
registered trademarks of Macromedia, Inc.
in the United States and other countries.
SYS-CON Publications, Inc., is independent
of Macromedia. All brand and product names
used on these pages are trade names, service
marks or trademarks of their respective com-
panies.

xsl

t
Transformations in a snap
marius zaharia & cristian ivascu

Configuring and Testing PHP
Servers for XSL Support

This article originally
appeared on
www.macromedia.com/
devnet. Reprinted with
 permission.

mxdj.com • �

Note: On some systems, the phpinfo()

function is disabled for security reasons.

In this case, you will receive a warning

that this function doesn’t exist or your

browser will display a white page. You’ll

have to remove this function from the dis-

able_functions list in the php.ini file or ask

your system administrator to do it.

	 The PHP version is listed on top of the
page. Depending on your current PHP
version, you need the following XML/XSL
libraries:
•	 For PHP 4.2 – Sablotron
•	 For PHP 4.3+ – DOM/XML
•	 For PHP 5 – DOM and XSL extensions

	 In the next section, you will learn how
to check if your server already has these
libraries installed and configured.

How Do I Know If I Have XML/XSL

Support?

	 On the same page that you have
created and loaded in the browser previ-
ously, test.php, look for these settings,
depending on your PHP version:
•	 For PHP 5:
	 DOM/XML
	 libXML
	 XSL
	 libxslt
•	 For PHP 4.3+:
	 DOM/XML
	 DOM/XSLT
	 libxslt
	 libxml
	 zlib (on Mac OS only)

•	 For PHP 4.2:
	 Expat
	 XSLT Support

	 If these settings are marked as
enabled or active, then you have what
you need to process XML documents on
the server.

Note: For libxml, libxslt, and Expat, only

the version number may be listed (instead

of the enabled/disabled status); this indi-

cates they are present on your server.

	 If any of these libraries are missing
or are disabled on your server, then your
server is not configured to enable XSL. If
you usually dive head-first into your proj-
ects and don’t like to spend time config-
uring your server, you might have already
encountered this error:
MM_XSLTransform error.
	 The server could not perform the XSL
transformation because an XSLT proces-
sor for PHP could not be found. Contact
your server administrator and ask them to
install an XSLT processor for PHP.
	 The error is displayed on the dynamic
page where you have applied the XSL
Transformation server behavior in
Dreamweaver 8.
	 The error message is an indication
that your server does not have the
required XML/XSL libraries.
	 To learn how to apply the XSL
Transformation server behavior, see
the section, Applying a Server-Side XSL
Transformation to the RSS Feed, in my

previous article.
	 In general, PHP servers require two
components to enable XSL:
•	 a library (that usually comes with your

PHP installation for your operating sys-
tem)

•	 a PHP extension using that library

	 These two components may vary,
according to your current PHP version
and may also have other prerequisite
modules. Go to the next section to find
how to install what you need.

Configuring PHP 4.2
Servers
	 If you’re using PHP 4.2.x, I advise you
to upgrade to the latest PHP version for
the following reasons:
•	 XML and XSL libraries for PHP 4.2 are

deprecated and never really reached a
truly stable state.

•	 Support for XML and XSL has been
rewritten from scratch in PHP 5 to
offer greater speed, improved memory
management, and compliance to W3C
standards. You can read more about
the XML improvements in PHP 5 in
Christian Stoker’s article.

•	 PHP 5 offers more XML support by
default and is a lot easier to configure.

	 If, however, you are restricted to using
PHP 4.2.x as your application server, you
must have the following libraries for per-
forming XSL server-side development:
•	 Expat
•	 iconv
•	 Sablotron

	 Expat is an open-source XML parser.
It must be installed prior to Sablotron, as
it is required by this library. To learn more
about Expat, visit the SourceForge web-
site. Sablotron is an open-source XSLT
processor. You can find out more about
Sablotron from the Ginger Alliance web-
site. To install these libraries on your serv-
er, follow the instructions corresponding
to your operating system. It is likely that
Expat is already built-in into your PHP or
Apache installation.

Configuring PHP 4.2
Servers on Windows
	 The following instructions assume
you have already installed a web server
with PHP language support on a comput-

� • mxdj.com 3 • 2006

SYS-CON Media

President & CEO

Fuat Kircaali, 201 802-3001

fuat@sys-con.com

Group Publisher

Jeremy Geelan, 201 802-3040

jeremy@sys-con.com

ADVERTISING

Senior Vice President, Sales &

Marketing

Carmen Gonzalez, 201 802-3021

carmen@sys-con.com	

Vice President, Sales & Marketing

Miles Silverman , 201 802-3029

miles@sys-con.com

Advertising Sales Director

Robyn Forma, 201 802-3022

robyn@sys-con.com	

Advertising Sales Manager

Megan Mussa, 201 802-3023

megan@sys-con.com	

Associate Sales Manager

Kerry Mealia, 201 802-3026

kerry@sys-con.com

	

Production

Lead Designer

Louis F. Cuffari, 201 802-3035

louis@sys-con.com

Art Director

Alex Botero, 201 802-3031

alex@sys-con.com	

Associate Art Directors

Tami Beatty, 201 802-3038

tami@sys-con.com

Abraham Addo, 201 802-3037

abraham@sys-con.com

Assistant Art Directors

Andrea Boden, 201 802-3034

andrea@sys-con.com	

Video Production

Ryan Palmieri, 201 802-3036

ryan@sys-con.com

SYS-CON.COM

Consultant, Information Systems

Robert Diamond, 201 802-3051

robert@sys-con.com

Web Designers

Stephen Kilmurray, 201 802-3053

stephen@sys-con.com

Wayne Uffleman, 201 802-3057

wayne@sys-con.com

Accounting

Financial Analyst

Joan LaRose, 201 802-3081

joan@sys-con.com

Accounts Payable

Betty White, 201 802-3002

betty@sys-con.com

Accounts Receivable

Gail Naples, 201 802-3062

gailn@sys-con.com	

CUSTOMER RELATIONS

Circulation Service Coordinators

Edna Earle Russell, 201 802-3081

edna@sys-con.com

JDJ Store Manager

Brundila Staropoli, 201 802-3000

bruni@sys-con.com

er running Windows. Before proceeding
with the installation steps, check if the
required libraries are not already installed
on your server by loading the PHP test
page in your browser.
•	 If Expat is already enabled, you can

skip steps 1-3.
•	 If both Expat and Sablotron are

installed, but XSL support is not
enabled, you can skip steps 1-7.

•	 If both Expat and Sablotron are installed,
and XSL support is enabled, you can skip
this section altogether. Your server is
already configured for server-side devel-
opment using XML data.

•	 Download the latest version of Expat
for Linux from the SourceForge.net
website. The file you’re looking for is
named expat_win32bin.exe.

•	 Run the downloaded file to install
Expat to a folder of your choice on the
server.

•	 Locate the expat.dll file in the libs sub-
directory of the Expat installation, and
copy it to the system32 subdirectory
of your Windows installation (usually,
C:\Windows\system32\).

•	 Copy the iconv.dll file from the dlls
folder of your PHP installation to
the system32 subdirectory of your
Windows installation. This is a charac-
ter set conversion library required by
Sablotron.

•	 Download Sablotron 0.90 from the
Ginger Alliance website. Look for the
Windows binary release.

•	 Extract the ZIP file contents to a folder
of your choice on your computer. This
creates a folder called Sablot-0.90.

•	 Locate the sablot.dll file in the bin sub-
directory of your Sablotron installation
and copy it to the system32 subdirec-
tory of your Windows installation (usu-
ally located at C:\Windows\system32\).

•	 Locate the php.ini configuration file for
your current PHP installation (usually
located in C:\Windows\) and open it
using any text editor (such as Notepad).

Note: You can find out where the PHP

configuration file (php.ini) is located on

your system by loading the PHP test page

containing the server information in your

browser. Look for the Configuration File

Path setting:

•	 Search for the following line:
•	 extension_dir

•	 Make sure the value of this directive
is set to the extensions directory of
your PHP installation and that this line
is uncommented. For instance, if your
PHP installation is located in C:\PHP,
the line should be as follows:

•	 extension_dir = C:\PHP\extensions
•	 Search for the following line in the

php.ini file:
•	 extension=php_xslt.dll
•	 If this line is missing, locate the

Windows Extensions section of the
php.ini file and copy it there. If this line
is commented, that is, it starts with the
semicolon (;) character, uncomment it
by deleting the semicolon to enable
XSLT support.

•	 Save the php.ini file.
•	 Restart your web server.

	 To check if the configuration went
smoothly, read the section, Testing PHP
4.2 Servers.

Configuring PHP 4.2
Servers on Linux
	 The following instructions assume
you have already installed a web
server with PHP language support on
a computer running Linux. Before pro-
ceeding with the installation instruc-
tions, check if the required libraries are
not already installed on your server
by loading the PHP test page in your
browser.
•	 If Expat is already enabled, you can

skip steps 1-3.
•	 If both Expat and Sablotron are

installed, but XSL support is not
enabled, you can skip steps 1-6.

•	 If both Expat and Sablotron are
installed, and XSL support is enabled,
you can skip this section altogether.
Your server is already configured for
sever-side development using XML
data.

•	 Download the latest version of Expat
for Linux from the SourceForge.net
website. The source file you’re looking
for is called expat-1.95.8.tar.gz.

Note: The version number may be differ-

ent at the time you download the package.

The version used in the following instruc-

tions was the latest version at the time of

writing this article. Please make sure you

use the version number you have in the

next instructions.

3 • 2006

•	 Extract the archive contents to a direc-
tory of your choice using the following
command:

•	 tar xzvf expat-1.95.8.tar.gz
•	 Unix creates a directory called expat-

1.95.8, which contains the files for
compiling and installing Expat.

•	 To compile and install Expat, you need
root privileges (you may have to log on
again using the root user).

•	 Go to the expat-1.95.8 directory and
run the following commands at the
command prompt, in the given order:

•	 ./configure –-prefix=/usr
•	 make
•	 make install
•	 Expat is now installed on your server.
•	 Download Sablotron 0.90 from the

Ginger Alliance website. The source file
you’re looking for is called Sablot-0.90.
tar.tar.

Note: The version number may be differ-

ent at the time you download the package.

The version used in the following instruc-

tions was the latest at the time of writing

this article. Please make sure you use

the version number you have in the next

instructions.

•	 Extract the source archive as you did
for Expat, using the following com-
mand:

•	 tar xzvf Sablot-0.90.tar.tar
•	 Linux creates a directory called Sablot-

1.0.2, which contains the files for
installing and compiling Sablotron.

•	 Go to the Sablot-0.90 directory and
run the following commands at the
commands prompt, in the given order
(make sure you are logged in as root):

•	 ./configure -–prefix=/usr
•	 make

•	 make install
•	 Sablotron is now installed on your

server.
•	 Recompile PHP with XSLT support. To

do that, configure it with the following
commands, in this sequence:

•	 ./configure \
•	 --prefix=/usr/local/php \
•	 --with-config-file-path=/usr/local/php \
•	 --with-apxs=/usr/sbin/apxs \
•	 --enable-xslt \
•	 --with-xslt-sablot=/usr

Note: The flags used above only enable

Sablotron and XSLT support. Add any

other flags that might be necessary for

your own configuration, such as MySQL

support, LDAP, FTP, and so on.

•	 Also, the path to your current PHP
installation may be different than
/usr/local/php, depending on your set-
tings or the Linux/Unix version you are
using.

•	 Compile PHP:
•	 make
•	 Reinstall PHP:
•	 make install
•	 Restart your web server.

	 To check if the configuration went smooth-
ly, read the section, Testing PHP 4.2 Servers.

Configuring PHP 4.2
Servers on Mac OS
	 The following instructions assume
you have already installed a web server
with PHP language support on a com-
puter running Mac OS. Before proceeding
with the installation instructions, check
if the required libraries are not already
installed on your server by loading the
PHP test page in your browser.

•	 If Expat is already enabled, you can
skip steps 1-6.

•	 If both Expat and Sablotron are
installed, but XSL support is not
enabled, you can skip steps 1-13.

•	 If both Expat and Sablotron are
installed, and XSL support is enabled,
you can skip this section altogether.
Your server is already configured for
sever-side development using XML
data.

•	 Download the latest version of the
Expat source code package from the
SourceForge.net website. The file you
need is expat-1.95.8.tar.gz (the latest
available version as of writing this
article).

•	 Extract the library to a folder of your
choice, using StuffIt Expander, or the
tar command-line utility:

•	 tar xzvf expat-1.95.8.tar.gz
•	 Open a Terminal window and navigate

to the created folder (usually Expat-
1.95.8).

•	 Configure the Expat library for use with
your system, by executing the follow-
ing command:

•	 ./configure –with-prefix=/usr
•	 Compile the library:
•	 sudo make
•	 To install the library, you must run the

following command:
•	 sudo make install
•	 The Expat library should be correctly

installed.
•	 Download Sablotron 0.90 from the

Ginger Alliance website and save the
tar.gz file to your local drive.

•	 Extract the Sablotron library to a folder
of choice, using StuffIt Expander, or the
tar command-line utility:

•	 tar xzvf Sablot-0.90.tar.gz
•	 Open a Terminal window and navigate to

the created folder (usually Sablot-0.90).
•	 Run the configuration scripts for your

system, by executing the following
command:

•	 ./configure –with-prefix=/usr
•	 Compile the library:
•	 sudo make
•	 Execute the following command to

install the library:
•	 sudo make install
•	 Configure PHP for XSLT support. To do

that, execute the following commands
in this sequence:

•	 ./configure --enable-xslt --with-xslt-
sablot --with apxs

10 • mxdj.com 3 • 2006

Note: The flags used above only enable

Sablotron and XSLT support. Add any

other flags that might be necessary for

your own configuration, such as MySQL

support, LDAP, FTP, and so on.

•	 Recompile PHP:
•	 sudo make
•	 Install PHP (overwriting any other

existing version):
•	 sudo make install
•	 Restart your web server.

	 To check if the configuration went
smoothly, read the section, Testing PHP
4.2 Servers.

Testing PHP 4.2 Servers
	 The first proof of a successful installa-
tion is that your web server doesn’t throw
any errors after restarting. To check if
everything went smoothly, load the PHP
test page in your browser. You will see a
section similar to the following image:
	 Check if these settings are present
and enabled:
•	 Expat
•	 XSLT Support

	 For Expat and Sablotron, only the ver-
sion number may be listed (instead of the
enabled/disabled status); this indicates
they are present on your server.
	 Congratulations! Your server is now
prepared for server-side development
using XML and XSL.

Configuring PHP 4.3+
Servers
	 Before you continue reading this
section, you should first consider upgrad-
ing your server to PHP 5 for the reasons
explained earlier.
	 If, however, you are restricted to using

PHP 4.3.x as your application server or
you don’t plan for an upgrade, you need
to have the following libraries for perform
XSL server-side development:
•	 libxml (you need at least version

2.4.14)
•	 DOM XML
•	 libxslt (you need at least version 1.0.18)
•	 DOM XSLT
•	 zlib (on Mac OS only).

	 DOM XML and DOM XSLT are two
PHP extensions used for processing XML
files. To learn more about DOM XML and
DOM XSLT, visit the PHP.net website. To
run properly, these extensions require
the libxml and libxslt libraries from the
Gnome project. You can find out more
about libxml on the xmlsoft.org website.
To learn about libxslt, visit this web page.

Configuring PHP 4.3+
Servers on Windows
	 The following instructions assume
you have already installed a web server
with PHP language support on a comput-
er running Windows. Before proceeding
with the configuration steps, check if the
required libraries are not already enabled
on your server by loading the PHP test
page in your browser.
	 As of PHP 4.3, the libxml and libxslt
libraries are built-in in the PHP instal-
lation. The DOM XML and DOM XSLT
support is also included by default, but
may be disabled in your particular server
configuration. To enable DOM XML and
DOM XSLT on Windows operating system,
follow these instructions:

•	 Check if the iconv.dll file is located
in the system32 subdirectory of your
Windows installation. If it’s not, copy
this file from the dlls folder of your PHP

installation to the specified path. This
is a character set conversion library
required by DOM XML.

•	 Locate the php.ini configuration
file for your current PHP installation
(usually located in C:\Windows\) and
open it using any text editor (such as
Notepad).

Note: You can find out where the PHP

configuration file (php.ini) is located on

your system by loading the PHP test page

containing the server information in your

browser. Look for the Configuration File

Path setting:

•	 Search for the following line:
•	 extension_dir
•	 Make sure the value of this directive is

set to the extensions directory of your
PHP installation and this line is uncom-
mented. For instance, if your PHP
installation is located in C:\PHP, the line
should be:

•	 extension_dir = C:\PHP\extensions
•	 Search for the following line:
•	 ;extension=php_domxml.dll
•	 and uncomment it by removing the

semicolon (;) character, to activate
DOM XML.

•	 Save the php.ini file.
•	 Restart your web server.

	 To check if the configuration went
smoothly, read Testing PHP 4.3 Servers.

Configuring PHP 4.3+
Servers on Linux
	 The following instructions assume
you have already installed a web server
with PHP language support on a comput-
er running Linux. Before proceeding with
the installation instructions, check if the
required libraries are not already installed
on your server by loading the PHP test
page in your browser.
•	 If libxml is already enabled, you can

skip steps 1-4.
•	 If libxsl is already enabled, you can skip

steps 1-7.
•	 If all required libraries are enabled, you

can skip this section altogether. Your
server is already configured for sever-
side development using XML data.

•	 Download the latest version of libxml
for Linux from the xmlsoft.org website.
The source file you’re looking for is
called libxml2-2.6.20.tar.gz.

12 • mxdj.com 3 • 2006

Note: The version number may be differ-

ent at the time you download the package.

The version used in the following instruc-

tions was the latest at the time of writing

this article. Make sure you use the version

number you have in the next instructions.

•	 Extract the archive contents to a direc-
tory of your choice using the following
command:

•	 tar xzvf libxml2-2.6.20.tar.gz
•	 Linux creates a directory called libx-

ml2-2.6.20, which contains the files for
compiling and installing libxml.

•	 To compile and install libxml, you need
root privileges (you may have to re-
login using the root user).

•	 Go to the libxml2-2.6.20 directory and
run the following commands at the
command prompt, in the given order:

•	 ./configure -–prefix=/usr
•	 make
•	 make install
•	 Libxml is now installed on your server.
•	 Download the latest libxslt version

from the xmlsoft.org website. The
source file you’re looking for is called
libxslt-1.1.14.tar.gz.

Note: The version number may be differ-

ent at the time you download the package.

The version used in the following instruc-

tions was the latest at the time of writing

this article. Make sure you use the version

number you have in the next instructions.

•	 Extract the source archive as you did
for libxml, using the following com-
mand:

•	 tar xfz libxslt-1.1.14.tar.gz
•	 Linux creates a directory called libxslt-

1.1.14, which contains the files for
installing and compiling libxslt.

•	 Go to the libxslt-1.1.14 directory and
run the following commands at the
commands prompt, in the given order
(make sure you are logged in as root):

•	 ./configure –-prefix=/usr –with-libxml-
prefix=/usr

•	 make
•	 make install
•	 Libxslt is now installed on your server.
•	 Configure PHP with DOM XML and

DOM XSL support. To do that, execute
the following commands, in this
sequence:

•	 ./configure \
•	 --prefix=/usr/local/php \

•	 --with-config-file-path=/usr/local/php \
•	 --with-apxs=/usr/sbin/apxs \
•	 --with-xml=/usr \
•	 --with-libxml-dir=/usr \
•	 --with-dom=/usr \
•	 --with-dom-xslt=/usr

Note: The flags used above only enable

DOM XML and DOM XSL support. Add

any other flags that might be necessary for

your own configuration, such as MySQL

support, LDAP, FTP, and so one. Also, the

path to your current PHP installation may

be different than /usr/local/php, depending

on your settings or the Linux/Unix version

you are using.

•	 Compile PHP:
•	 make
•	 Install PHP:
•	 make install
•	 Restart your web server.

	 To check if the configuration went
smoothly, read Testing PHP 4.3 Servers.
Configuring PHP 4.3+ Servers on Mac OS
	 The following instructions assume
you have already installed a web server
with PHP language support on a com-
puter running Mac OS. Before proceeding
with the installation instructions, check
if the required libraries are not already
installed on your server by loading the
PHP test page in your browser. In addi-
tion to the libraries mentioned earlier,
you may also need to install zlib prior to
the libxml installation.
•	 If zlib is already enabled, you can skip

steps 1-5.
•	 If libxml is already enabled, you can

skip steps 1-11.
•	 If libxsl is already enabled, you can skip

steps 1-17.
•	 If all required libraries are enabled, you

can skip this section altogether. Your
server is already configured for sever-
side development using XML data.

Note: The required libraries are pre-

sented in the order they must be installed.

Therefore, if you try to install libxml without

having zlib, your browser will display an

error message and you will have a corrupt

installation.

•	 Download the latest source code pack-
age for the zlib library. The file you’re
looking for is zlib-1.1.4.tar.gz.

•	 Extract the zlib library to a folder of
your choice, using StuffIt Expander, or
the tar command line utility:

•	 tar xzvf zlib-1.1.4.tar.gz
•	 Open a Terminal window and navigate

to the created folder.
•	 Compile the library, using the follow-

ing command:
•	 sudo make
•	 Install the zlib library:
•	 sudo make install
•	 Download the latest source code ver-

sion of the libxml2 library.
•	 Extract the library to a folder of your

choice, using StuffIt Expander, or the
tar command-line utility:

•	 tar xzvf libxml2-2.6.20.tar.gz
•	 Open a terminal window and navigate

to the created folder.
•	 Configure the libxml library with the

command:
•	 ./configure –with-prefix=/usr
•	 Compile the library for your system by

running the command:
•	 sudo make
•	 Install the library:
•	 sudo make install
•	 Download the latest source code ver-

sion of the libxslt library.
•	 Extract the library to a folder of choice,

using StuffIt Expander, or the tar com-
mand line utility:

•	 tar xfz libxslt-1.1.14.tar.gz
•	 Open a Terminal window and navigate

to the created folder.
•	 Configure the libxslt library, by issuing

the following commands:
•	 ./configure --with-prefix=/usr/local \
•	 --with-libxml-prefix=/usrl/local /
•	 --with-libxml-include-prefix=/usr/local/

include \
•	 --with-libxml-lib-prefix=/usr/local/lib
•	 Compile the library for your system, by

running the following command:
•	 sudo make
•	 Install the library on your server (you

need to know the root password):
•	 sudo make install

Note: Alternatively, you can use a bundled

package of the libxml and libxslt libraries.

Installation instructions are provided here.

•	 After installing all the required libraries,
you need enable them in PHP, by run-
ning the following commands:

•	 ./configure –with-zlib-dir=/usr/local \
•	 --with-dom –with-dom-xslt=/usr/local

3 • 2006 mxdj.com • 13

--with-apxs
•	 Note: The flags used above only enable

XSL support. Add any other flags that
might be necessary for your own con-
figuration, such as MySQL support,
LDAP, FTP, and so on.

•	 Recompile PHP:
•	 sudo make
•	 Install PHP (overwriting any other

existing version):
•	 sudo make install
•	 Restart your web server.
To check if the configuration went

smoothly, read the section Testing PHP
4.3 Servers.

Testing PHP 4.3+ Servers
	 The first proof of a successful installa-
tion is that your web server doesn’t throw
any errors after restarting. To check if
everything went smoothly, load the PHP
test page in your browser. You should see
a section similar to the following image:
	 Check if these settings are present
and enabled:
•	 DOM/XML.
•	 DOM/XSLT.
•	 libxslt.
•	 libxml.
•	 zlib (for Mac OS).

	 For libxml and libxslt, only the version
number may be listed (instead of the
enabled/disabled status); this indicates
they are present on your server.
	 Congratulations! Your server is now
prepared for server-side development
using XML and XSL.

Configuring PHP 5 Servers
On PHP 5 application servers, XML and
XSL support has been greatly improved:
•	 Server-side XSL transformations are a

lot faster.
•	 XML functions are W3C compliant.
•	 XML functionality is usually built-in

and enabled by default.

	 Here is what you need for server-side
XSL development on PHP 5:
•	 DOM extension, which, in turn,

requires libxml2.
•	 XSL extension, which, in turn, requires

libxslt.

	 The lixml2 and libxslt libraries by the
Gnome project are usually built-in for
Windows, so you don’t need to worry
about them. You may need to compile
these libraries into your PHP installation
on Linux-based systems, although this is
unlikely in most cases. Go to the section
corresponding to your operating system
for detailed configuration instructions.
Configuring PHP 5 Servers on Windows
	 The following instructions assume
you have already installed a web server
with PHP language support on a comput-
er running Windows. Fortunately, there
are a lot of free tools on the Internet that
help you install and configure a web serv-
er automatically. My personal favorite is
WAMP Server, which also sets up a MySQL
server, phpMyAdmin and SQLiteManager,
in addition to Apache and PHP. For
detailed instructions on installing WAMP
Server, visit this web page.
	 Before proceeding with the configura-
tion instructions, check if the required
libraries are not already enabled on your
server by loading the PHP test page in
your browser.
	 As of PHP 5.0, libxml and libxslt librar-
ies, and DOM extension are built in the
PHP installation. The XSLT extension is
also included by default, but may be
disabled in your particular server configu-
ration. To enable the XSLT extension on
Windows, follow these instructions:
•	 Locate the php.ini configuration file for

your current PHP installation (usually
in C:\Windows\) and open it using any
text editor (such as Notepad).

•	 Note: You can find out where the PHP
configuration file (php.ini) is located
on your system by loading the PHP

test page containing the server infor-
mation in your browser. Look for the
Configuration File Path setting:

•	 Search the following line:
•	 ;extension=php_xsl.dll
•	 and uncomment it by removing the ;

character.
•	 Save the php.ini file.
•	 Restart your web server.

	 To check if the configuration went
smoothly, read the section Testing PHP 5
Servers.

Configuring PHP 5 Servers
on Linux
	 The following instructions assume
you have already installed a web server
with PHP language support on a com-
puter running Linux. Before proceeding
with the configuration instructions, check
if the required libraries are not already
enabled on your server by loading the
PHP test page in your browser.
	 As of PHP 5.0, libxml and libxslt librar-
ies, and DOM extension are built-in in
the PHP installation. The XSLT extension
is also included by default, but may be
disabled in your particular server configu-
ration. To enable the XSLT extension on
Linux, follow these instructions:
•	 Configure PHP with XSL support. To do

that, execute the following commands,
in this sequence:

•	 ./configure \
•	 --prefix=/usr/local/php \
•	 --with-config-file-path=/usr/local/php \
•	 --with-apxs=/usr/sbin/apxs \
•	 --with-libxml-dir=/usr
•	 --with-xsl=/usr

Note: The flags used above only enable

XSL support. Add any other flags that

might be necessary for your own configu-

ration, such as MySQL support, LDAP,

FTP, and so on. Also, the path to your cur-

rent PHP installation may be different than

/usr/local/php, depending on your settings

or the Linux/Unix version you are using.

•	 Compile PHP:
•	 make
•	 Install PHP:
•	 make install
•	 Restart your web server.

	 To check if the configuration went smooth-
ly, read the section Testing PHP 5 Servers.

“For libxml and libxslt, only
the version number may be

listed this indicates they are
present on your server”

14 • mxdj.com 3 • 2006

Configuring PHP 5 Servers
on Mac OS X
	 The following instructions assume
you have already installed a web server
with PHP language support on a com-
puter running MAC OS X. In the default
configuration, the Apache web server is
installed, but PHP support is disabled. To
learn how to enable it, read the article by
James Pelow.
	 Before proceeding with the configura-
tion instructions, check if the required
libraries are not already enabled on your
server by loading the PHP test page in
your browser.
	 You can also download a package
that will install PHP 5.04 (as of writing
this article) with default support for
XML and XSLT from the entropy.ch web-
site.
•	 If libxml2 is already enabled, you can

skip steps 1-7.
•	 If both libxml2 and libxslt are already

installed, but XSLT support is not
enabled in your PHP installation, you
can skip steps 1-12.

•	 Download the latest source code ver-
sion of the libxml2 library from the
Gnome Project website.

•	 Extract the library to a folder of choice,
using either StuffIt Expander, or the tar
command line utility:

•	 tar xzvf libxml2-2.6.20.tar.gz
•	 Open a Terminal window and navigate

to the created folder.
•	 Configure the libxml2 library with the

following command:
•	 ./configure –with-prefix=/usr/local
•	 Compile the library:
•	 make
•	 Install the libxml library on your server

(you need to know the root password):
•	 sudo make install
•	 Download the latest source code ver-

sion of the libxslt library from this web-
site.

•	 Extract the library to a folder of your
choice, using either StuffIt Expander, or
the tar command line utility:

•	 tar xfz libxslt-1.1.14.tar.gz
•	 Open a Terminal window and navigate

to the created folder.
•	 Configure the libxslt library, by issuing

the following command:
•	 ./configure --with-prefix=/usr/local \
•	 --with-libxml-prefix=/usr/local /
•	 --with-libxml-include-prefix=/usr/local/

include \

•	 --with-libxml-lib-prefix=/usr/local/lib
•	 Compile the libxslt library:
•	 make
•	 Install the libxslt library on the server

(you will need the root password):
•	 sudo make install
•	 You need to recompile PHP to enable

XML and XSL support. Configure PHP
with at least the following flags:

•	 ./configure --with-xml –with-zlib –with-
xslt

Note: The flags used above only enable

XSL support. Add any other flags that

might be necessary for your own configu-

ration, such as MySQL support, ldap, ftp,

and so forth.

•	 Compile PHP:
•	 sudo make
•	 Install the new PHP version. It will

overwrite any previous version.
•	 sudo make install
•	 Restart your web server.

	 To check if the configuration went
smoothly, read the section Testing PHP 5
Servers.

Testing PHP 5 Servers
	 The first proof of a successful installa-
tion is that your web server doesn’t throw
any errors after restarting. To check if
everything went smoothly, load the PHP
test page in your browser. You should see
a section similar to the following image,
if the DOM extension was successfully
enabled.
	 If XSL support was successfully
enabled, too, you should also see a sec-
tion similar to this one:
	 Check if these settings are present
and enabled:
•	 DOM/XML.
•	 libXML.
•	 XSL.
•	 libxslt.

	 For libxml and libxslt, only the version
number may be listed (instead of the
enabled/disabled status) – this indicates
they are present on your server.
	 Congratulations! Your server is now
prepared for server-side development
using XML and XSL

Where to Go from Here
	 In this article, I have explained how
to prepare your PHP server for server-
side XSL transformations. Now you have
everything you need to start explor-
ing the new XSL authoring features in
Dreamweaver 8. A good point to start my
next article, Consuming a Remote RSS
Feed with Dreamweaver 8.
	 You can also have a look at these
additional resources:
•	 The article Displaying XML Data walks

you through using client-side XSL
transformations to process XML docu-
ments.

•	 John Skidgel shows how a restaurant
website can use XML and XSL to
display its daily menu, in his article,
Creating XSLT Fragments for Server-
Side Transformations.

•	 Marc Liyanage’s website offers a wealth
of resources for MAC OS users.

•	 The XSL FAQ
•	 The Macromedia XML and XSL

Developer Center Resource page

Marius Zaharia is the documentation man-

ager at InterAKT Online, a developer of

professional tools for dynamic web devel-

opment. When he’s not writing articles

and tutorials to guide web developers, he

enjoys learning new things and exploring

new technologies. His interests range from

web development to politics and avant-

garde electronic music.

Cristian Ivascu is a technical writer with

InterAKT Online. He is a strong supporter

of open-source software and a fan of

Japanese culture and rock music.

3 • 2006 mxdj.com • 15

acromedia Dreamweaver
8 is a major break-

through for XML development, just as
Dreamweaver MX 2004 was for CSS. The
development team behind this release
decided to offer people the entry-point
support they needed to tackle XML and
XSL-based web projects. The approach
Dreamweaver 8 takes to XML and XSL is
no surprise:
•	 Visual XSL transformations using drag

and drop from the Bindings panel.
•	 Easy-to-use objects accessible from the

Insert bar.
•	 Code highlighting and code comple-

tion functions for the more experi-
enced developers.

	 Jen Taylor presents a brief over-
view of the new XML/XSL features
in Dreamweaver 8 in her article,
“Dreamweaver 8 New Features and
Benefits.” In this article, I use the new XML
features in Dreamweaver 8 in a real-life
situation: consuming a remote RSS feed
using server-side XSL transformations. It
is a useful exercise if you plan to include
news headlines, articles lists, blog posts,
or other syndicated content in your per-
sonal website, in a portal, or company
site.

Dreamweaver 8: Workspace
Orientation	
	 First, I’ll take you on a quick tour
of the new XML authoring features in
Dreamweaver 8 to help you become
familiar with the workspace.
Creating XML and XSL Documents
	 With Dreamweaver 8, you can create
XML and XSL documents from scratch,
just as you would create any other type

of page. Open Dreamweaver 8 and select
File > New. The New Document dialog
box appears.
	 Notice that you can also create XSLT
fragments that you can later use to pro-
cess XML data in your dynamic pages. An
XSLT fragment is a file that does not con-
tain the <head> and <body> tags like a
full XSLT page. It is a simple piece of code
that is later inserted in a dynamic page.
	 If you already have a static site set up
and want to go dynamic, you can easily
convert HTML pages into XSL templates,
from the File menu by selecting File >
Convert > XSLT 1.0.

Visual Authoring
	 The best thing about Dreamweaver
8 is that you get a smooth landing if you
plan to take up XML development. You
can see a tree-like representation of the
XML data source that you’re using, right
in the Bindings panel:
	 You can drag nodes from the tree and
drop them onto your XSL stylesheet, as
you will learn later in this article.
	 You can use any of the objects from
the XSLT tab on the Insert bar to display
repeating nodes, define simple or mul-
tiple conditions, and comment your code.
	 Towards the end of this tutorial,
you’ll also learn how to use the XSL
Transformation server behavior (from the
Application panel) in your dynamic pages
to process and display XML data:

Coding Made Easy
	 If you’d like to tweak the code or try
some XSL tricks of your own, you can
do this painlessly using the code hints
and code auto-completion features in
Dreamweaver 8.

	 You’ll discover and master all these
features in no time, as you follow this
tutorial.

Application Scenario
	 In this article, you will consume
Macromedia’s RSS feed (available here:
weblogs.macromedia.com/dev_center/
index.rdf) in a mock-up site that can be
anything from a blog, to a company site,
or a personal site. Macromedia makes
its Developer Center resources available
to the public as an RSS feed. It is a great
way to display the latest articles from
Macromedia right in your site and let
other developers know about them.

	 In this tutorial, you will:
•	 Understand RSS feeds and syndication
•	 Connect to the Macromedia Developer

Center’s remote RSS feed
•	 Process the RSS feed with XSLT using

the new features in Dreamweaver 8
•	 Apply a server-side XSL transformation

to include the feed in your mock-up
site, under the “Related Articles” sec-
tion of the generic page. Dreamweaver
8 supports server-side XSL transforma-
tions for ColdFusion, ASP, ASP.NET, and
PHP pages.

What Is Syndication?
	 Web syndication is a popular method
of making content available to other
websites simultaneously. Syndication is
achieved using web feeds or channels,
which are written in a variety of standards
RSS 0.9, 1.0, 2.0, or Atom. Despite the dif-
ferences between the various standards
and specifications, it is important to keep
in mind that all feeds are actually XML
documents that contain list-oriented

Consuming a Remote RSS 1.0 Feed
with Dreamweaver 8

XML and XSL-based web projects
by marius zaharia

rss

m

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

16 • mxdj.com 3 • 2006

information. The site that makes its con-
tent available as a source of information
is said to “publish a feed,” while the sites
that republish that content are said to
“consume the feed.”
	 Any information on your site that
visitors might be interested in reusing is
a good candidate for an RSS feed. This
includes news headlines, article lists,
press releases, job listings, bookmarks,
conference events, playlists, or software
releases.
	 The benefits of syndication are obvi-
ous:
•	 Imported content is updated automati-

cally when the remote feed changes.
•	 Content is made available to more

people, as sites republish the same
feed over and over. For instance,
Macromedia’s Developer Center
resources are made available by
DreamweaverFAQ.com, dopostback.
com, actionscript.it, and edcox.net.
webwatch.

•	 Content is served in a format that
matches your site’s look and feel.
Notice how differently the same infor-
mation is displayed in the websites
above.

What’s in an RSS Feed?
	 RSS is just another flavor of XML. The
term “RSS” is actually used to refer several
different formats that are used in parallel,
and therefore can have different mean-
ings:
•	 RSS 0.9x: In these versions, it stands for

Really Simple Syndication.
•	 RSS 1.0: Includes RDF, a W3C standard

for meta data. In this version, RSS
stands for RDF Site Summary. RSS
1.0 also incorporates the Dublin Core
Module, a standardized set of meta
data used to describe both the feed
and the individual items.

•	 RSS 2.0: This is the latest version,
which does not include RDF.

	 If you feel baffled by all the different
versions and standards available for RSS,
don’t worry: they are similar enough that
you can treat them as simply any other
XML document.

Note: If you want to learn more about the

differences between various RSS dialects,

check out this article from the O’Reilly

XML.com site.

	 An RSS feed is made up of a chan-
nel, which has a title, a link, and a
description followed by a series of
itemseach of which have a title, a link, a
description and an optional author and
publishing date. To see what I mean,
download a copy of the Macromedia
Developer Center RSS feed and open it in
Dreamweaver 8.
	 Notice how Dreamweaver 8 uses code
coloring to make the document easier to
read:
•	 Tags and attributes are blue
•	 Attribute values are green
•	 Content is displayed in black

	 The document starts with an XML
declaration followed by the RSS declara-
tion, which includes references to the
RDF namespace, the Dublin Core Module
namespace, and the RSS namespace.
	 For a reminder of namespaces, revisit
this section of my previous article, XSL
Overview.
	 The channel node contains generic
information about the RSS feed: title, link,
and a short description:

<channel rdf:about=”http://www.macro-

media.com/devnet/”>

 <title>Macromedia Developer Center

RSS Feed</title>

 <link>http://www.macromedia.com/

devnet/</link>

 <description>Macromedia Developer

Center is your center for the tutori-

als, articles, and sample applications

you need to master Macromedia prod-

ucts. </description>

	 Also included in the channel node is
a table of contents for the current feed,
specified by the items element. This is
actually an ordered list of links to the
Developer Center articles. To indicate that
the order is important, a sequence con-
tainer is used: rdf:Seq. The items in the
sequence are specified by rdf:li elements.

<items>

 <rdf:Seq>

 <rdf:li rdf:resource=”http://

www.macromedia.com/devnet/mx/flashcom/

articles/comm_components.html” />

<rdf:li

rdf:resource=”http://www.macromedia.

com/devnet/mx/flashcom/articles/flv_

bestpractices.html” />

<rdf:li

rdf:resource=”http://www.macromedia.

com/devnet/mx/flashcom/articles/dyn_

buffering.html” />

<rdf:li

rdf:resource=”http://www.macromedia.

com/devnet/mx/coldfusion/articles/adv_

flashforms.html” />

 </rdf:Seq>

 </items>

	 Notice that each item’s rdf:resource
URL must be the same as the associated
item element’s rdf:about URL, much like
in a table of contents, where each chapter
is located at a specified page number.

Note: Items appearing in the feed but

not as members of the channel’s table of

contents are likely to be discarded by RDF

parsers.

	 Finally, the actual Developer Center
articles are listed in the feed, as item ele-
ments. An item is made up of a title, a
link, a description, a subject (which indi-
cates the topic covered by the article), an
author, and a publishing date:

<item

rdf:about=”http://www.macromedia.com/

devnet/mx/flashcom/articles/comm_com-

ponents.html”>

<title>Building Communication

Components</title>

<link>http://www.macromedia.com/

devnet/mx/flashcom/articles/comm_com-

ponents.html

</link>

<description>This book excerpt from

O’Reilly describes the first major

step in building a full-fledgedappli-

cation.</description>

<dc:subject>Flash Communication

Server</dc:subject>

<dc:creator>Brian Lesser</dc:creator>

<dc:date>2005-07-25T17:31:46-08:00</

dc:date>

</item>

	 Now that you have learned how to
read the code that makes up an RSS feed,
you can start processing it to display the
articles in your site.

Creating an XSLT Fragment
	 You’ll start by creating an XSLT frag-
ment that displays the article headings in

3 • 2006 mxdj.com • 17

the Related Articles area of the mock-up
site:
•	 Download and unzip the tutorial sam-

ple files in your site root (the site must
be running a ColdFusion, PHP, ASP or
ASP.NET testing server). The sample
files are linked at the beginning of this
article. Check out How to define a site
in Dreamweaver (TechNote 14028) for
instructions on correctly defining your
site.

•	 Open the homepage.html page in
Dreamweaver 8.

•	 Select the list under the Related
Articles heading, by putting your cur-
sor in the that area of the page and
clicking the corresponding tag
form the tag selector:

•	 Press Delete to remove this section.
You will later replace it with the
Developer Center headlines.

•	 Select File > Save As and save the cur-
rent page as homepage.cfm, homep-
age.php, homepage.asp, or homep-
age.aspx, depending on your server
model.

•	 Select File > New and in the dis-
played dialog box, select Basic Page
> XSLT (Fragment), and click Create.
Dreamweaver prompts you to associ-
ate an XML file as the data source for
the new XSLT fragment.

•	 Select “Attach a remote file on the
Internet” and paste the following URL
in the text box:

•	 http://weblogs.macromedia.com/dev_
center/index.rdf

Note: Make sure you remove the http://

text before pasting the URL so those char-

acters are not duplicated in the URL.

•	 Click OK to attach the XML source.
Notice that a tree-like representation
of the RSS feed is displayed in the
Bindings tab of the Application panel
(If you cannot see the Bindings tab,
select Window > Bindings).

Note: You will need to be connected to the

Internet for a remote RSS feed to populate

the Bindings panel.

•	 Dreamweaver uses the following sym-
bols to display XML trees:

	 <> for an element that appears exactly
once within its parent node

	 <>+ for an element that appears one
or more times within its parent node

	 <>? for an optional XML element
	 @ for an XML attribute
•	 Save the file as headlines.xsl.

	 The XSLT fragment that you will create
next will display the article titles and their
authors. The titles will be linked to the
actual articles from the Developer Center.
	 You can achieve this by dragging and
dropping from the Bindings panel:
•	 Drag the rss:title node (having the par-

ent rss:item) from the XML tree and
drop it onto the page. Dreamweaver
inserts an XML data placeholder in
your page, which is, in fact, the XPath
expression corresponding to the node.

Note: You must use the rss:item node from

the rss:item parent node and not from the

rss:channel parent node.

•	 Place the mouse cursor after the XML
placeholder and press Shift-Enter
(Windows) or Shift-Return (Macintosh)
to begin a new line immediately below
it.

•	 Type by on the new line and press the
spacebar.

•	 Drag the dc:creator node from the
Bindings panel and drop it after “by.”

•	 Preview the page in your browser
using F12 (Windows) or Option + F12
(Macintosh). It is pulling the latest arti-
cle added to the Developer Center RSS
feed and the feed is updated regularly,
so your browser will display a different
article than the one shown here.

	 Notice that Dreamweaver auto-
matically generates a temporary file
for previewing the transformation
results. However, this is neither a client-
side, nor a server-side transformation.
Dreamweaver internally does the trans-
form using its built-in XSLT processor and
generates a temporary file for preview
purpose. Dreamweaver is performing
the translation. You will apply the actual
server-side transformation later on in this
tutorial. Also notice that the CSS styles
that are applied to the homepage are not
available in the transformation. They will
be after you include the XSLT fragment
in the homepage. Finally, notice that
only one article is displayed in the trans-
formation result page. To display all the
articles from the feed, you need to create
a repeat region that loops through all the
items in the feed and displays them.

Creating the Repeat Region
	 To display all the articles from the RSS
feed, follow these steps:
•	 In Dreamweaver Design view, select

the title and creator elements as well
as the “by” text from the headlines.
xsl document and right-click them
(Control-click on Mac).

•	 From the displayed menu, select
Paragraph Format > Paragraph. This
will display each article as a new
paragraph. Paragraph may already be
selected in the contextual menu.

•	 Go to the XSLT tab from the Insert bar,
and click the Repeat Region button.

18 • mxdj.com 3 • 2006

Note: The default view for the Insert bar is

menu view. If you are in menu view, select

Show as Tabs from the list of Insert bar

options. If you are in Tab view, right-click

(Control-click on Mac) any of the tabs and

select Show as Menu.

•	 In the XPath Expression Builder dialog
box, select the repeating node that
you want to loop through, which is
rss:item. Be careful not to confuse this
with the rss:items node.

•	 Click OK. Notice that Dreamweaver
displays a gray border labeled xsl:
for-each, around the selected text, to
indicate a repeat region.

•	 Save your page and preview it in a
browser. Again, since the Developer
Center resource feed is updated regu-
larly, the list of articles will be different.

	 Again, Dreamweaver is doing the XSL
transformation and displaying the result
in a temporary HTML file. In the next sec-
tion, you’ll learn how to link each article
to its corresponding URL, provided via
the RSS file.

Creating Links with XSL
	 To link the title of each article to the
corresponding resource on the acrome-
dia Developer Center, follow these steps:
•	 In the headlines.xsl page, select the

XML data placeholder for the article
title.

•	 In the Property inspector, click the
folder icon next to the Link text box, to
define a link on the selected text.

•	 Select the Data Sources option in the
Select file name from section of the
Select File dialog box.

•	 Each article title should point to
the URL contained by its rss:link
node.

•	 Select the rss:link node from the XML
tree. Be sure to select the rss:link node
under the rss:item parent node and
not the rss:link node under the rss:
channel parent node.

•	 Click OK. Dreamweaver generates the
link.

•	 Save the page and preview it in the
browser.

	 Click on the links to test it out. In
the next section, you will apply the XSL
Transformation server behavior to display
the articles on the homepage.

Applying a Server-Side
XSL Transformation to
the RSS Feed
	 To list the Developer Center articles
in the Related Articles section of your
homepage, follow these steps:
•	 Open the dynamic homepage file (PHP,

ASP, or ColdFusion page) you created
earlier in the tutorial.

•	 Place the mouse cursor below the
“Related Articles” heading.

•	 Go to the Application tab/menu
on the Insert bar, and click the XSL
Transformation button.

Note: You can access the same command

from the Server Behaviors tab, as well.

Note: If you are working on a ColdFusion

server, Dreamweaver might prompt you to

specify a RDS login password. Type in the

password or contact your network admin-

istrator, if you don’t know it.

•	 In the XSL Transformation dialog box,
click the Browse button next to the
XSLT file text box. Then browse to and
select the headlines.xsl file. Notice that
Dreamweaver automatically detects
the associated XML data source and
fills in the XML URI text box.

•	 Click OK to apply the transformation.
Dreamweaver displays the XSL frag-
ment directly in your dynamic page. It
also generates a folder called “includes”
in your site root. This folder contains
the library that performs the server-
side transformation and must be
uploaded on your testing tester. Notice
that the CSS styles from the stylesheet
attached to the home page are auto-
matically applied to the imported XSL
fragment.

•	 In the Files panel, find the includes
folder Dreamweaver created and
upload it to your server.

•	 Save the page and display it in the
browser (Make sure you have uploaded
the “includes” folder to your testing
server).

What Is Really Happening
	 Dreamweaver generates a runtime
library file that is used by the applica-
tion server to process the XML data and
output HTML content to the client’s
browser. The runtime library is the file in
the includes folder. The XSLT fragment,

the dynamic page containing it, and the
runtime library from the “includes” folder
must all be on the server for your page
to display correctly. To review the server-
side transformation workflow, visit this
section of my previous article.
	 Notice that all the items from the RSS
feed are displayed. If the feed has 10 or
20 articles, this may lead to a very long
home page, which might interfere with
your design requirements. In the next
sections, you will learn how to limit the
number of items that are displayed from
an RSS feed using parameters and you
will learn how to sort items.

Using Parameters in an XSL
Transformation
	 The processed RSS feed currently dis-
plays several articles on the homepage.
Suppose you only want to list the latest
four articles from the Developer Center.
To do this, you need a parameter that
tells the XSL transformation to display
only the first four items. Here are the
steps to do that.
•	 Open the headlines.xsl page and click

inside the XSL Repeat Region.
•	 Select the <xsl:for-each> tag from the

tag selector.
•	 In the Property inspector, click the

lightning bolt icon to define the condi-
tion that displays only the first four
items:

•	 In the XPath Expression Builder dialog
box, click Build Filter, then click the
plus (+) button to define a new XPath
condition. See the section in my article,
XSL Overview, for a review of XPath.

•	 Edit the default condition in the Where
field. Select that field and type posi-
tion(). In the Operator menu, select
<= (less or equal). Finally, in the Value
field, type $ItemsPerPage.

•	 The position() function returns a
number equal to the position of the
current node. This value must be less
or equal than the value specified by
the ItemsPerPage parameter. You will
define this parameter later, in your
dynamic home page file.

•	 Click OK to apply the condition.
•	 Save the XSL document, and preview

it in the browser using F12 (Windows)
or Option + F12 (Macintosh). Your
browser will throw an error similar to
this one:

•	 XSLT Error: The variable ‘ItemsPerPage’

20 • mxdj.com 3 • 2006

is not defined.Source tree node: #docu-
ment.

•	 This is because Dreamweaver performs
the XSL Transformation internally,
using nothing but the XSLT fragment
you have created and the XML source
file. The ItemsPerPage parameter that
you have used to limit the number of
displayed items is defined in xslt page,
but its value is passed to the XSLT page
by a dynamic page (homepage.php,
homepage.asp, homepage.aspx, or
homepage.cfm). To make the browser
preview work and to get used to the
code hints in Dreamweaver 8, type the
following line of code in the headlines.
xsl file right before the xsl:template
tag:

•	 <xsl:param name=”ItemsPerPage”
select=”4” />

•	 This code defines the value of the
ItemsPerPage parameter and gives it a
default value of 4.

Note: The default value of the

ItemsPerPage parameter specified in the

XSLT fragment will be ignored at run-time,

when the server-side transformation is

performed. The value specified in the XSL

Transformation server behavior will be

used instead.

	 You can now preview the XSLT frag-
ment in your browser without errors.
•	 Switch to the homepage dynamic

page.
•	 In the Server Behaviors tab from the

Application panel, double-click the XSL
Transformation server behavior to edit
it.

•	 Dreamweaver opens the XSL
Transformation dialog box. In the XSLT
Parameters area, click the XSLT param-
eters plus (+) to define a new param-
eter.

•	 Select ItemsPerPage from the Name
pop-up menu, and type 4 for its value.

•	 Click OK. If 4 appears with double
quotes around it in the XSL
Transformation dialog box, click the
Edit button, remove the quotes, and
click OK.

•	 Click OK again to dismiss the XSL
Transformation dialog box. Save your
page and preview it in your browser.
Make sure you have uploaded the
headlines.xsl, homepage file and
includes folder to your testing server.

	 Only the first four articles display in
the browser. You may need to refresh your
browser if all of the articles are still showing.
	 But how do you know these are the
latest articles from the Developer Center?
Since it is not always safe to assume RSS
feeds list items in chronological order,
you will learn how to sort them by date.

Sorting Items
	 In my previous article, XSL Overview,
I explained the syntax for sorting XML
nodes. You will apply that knowledge to
sort articles by date.
•	 With the headlines.xsl page open,

switch to Code view.
•	 Locate the following line of code:
•	 <xsl:for-each select=”rdf:RDF/rss:

item[position() <= $ItemsPerPage]”>
•	 You can use Edit > Find and Replace to

look for it.
•	 Press Enter (Windows) or Return

(Macintosh) after this line and start
typing <xsl:s. Dreamweaver suggests
hints to fill in your code.

•	 Select xsl:sort and press Enter
(Windows) or Return (Macintosh).
If you are unable to see the code
hints menu, you can press Control +
Spacebar to display it.

•	 As you type a space, Dreamweaver
suggests the attributes of the <xsl:sort
/> tag. Choose select and type dc:date
as its value.

•	 Type another space and select order
from the list of suggested attributes.
Choose descending for its value using
the Dreamweaver code hints again.

•	 Close the xsl:sort tag by typing />. The
line should look like the following:

•	 <xsl:sort select=”dc:date”
order=”descending” />

	 Dreamweaver can really make coding
XSL documents child’s play. If you’re not
sure which function or XSL construct you
need, you can always check out O’Reilly’s
XSLT Reference on the Reference panel by
selecting Window > Reference and select-
ing O’REILLY XSLT Reference from the
Book pop-up menu.
	 You can even copy-paste code sam-
ples from the Reference panel directly in
your code.
	 Save the file and put your files to the
server and preview them in your browser.
You will see that the list of articles is
sorted in descending order.

Creating a Detailed Display
of the RSS Feed
	 The links to the Developer Center
articles are okay, but what if you need a
detailed page that displays all articles,
grouped by subject, listing their descrip-
tions and their authors? In this section,
you will exercise your newly-acquired
XSLT skills to create a detailed view of the
RSS feed and you will learn how to use
conditional regions to display specific
content.
	 Follow these steps to create the XSLT
fragment that displays the detailed view
of the articles:
•	 Select File > New to create a new XSLT

fragment.
•	 At the Dreamweaver prompt, attach the

remote RSS feed, as described previously.
•	 Save the page as all_articles.xsl.
•	 Drag the following nodes from the

XML tree in the Bindings panel and
drop them onto your page, each on a
new line:

	rss:title (from the rss:channel par-

ent node).

	rss:description (from the rss:channel

parent node).

•	 Format the channel title as Heading 2.
•	 Suppose your site focuses on Flash

technology. Therefore, you would like
to display Flash-related articles first,
and all the others after under a sepa-
rate heading. Type the following text
below the channel description, on two
separate lines:

•	 Flash
•	 Other Technologies
•	 Format each of the two lines as

Heading 3.
•	 On a new line below the Flash heading,

drag and drop the article title node
(rss:title) from the rss:item parent node.

•	 Link the article title to the correspond-
ing resource, as described previously.

•	 On the same line, insert an em dash
after the article title from the Text tab
of the Insert bar.

Note: If the em dash button is not showing

on the Insert bar, you may need to select it

from the more characters menu at the right

edge of the displayed characters.

•	 Type by after the em dash, and then drag
and drop the dc:creator node after it.

3 • 2006 mxdj.com • 21

•	 Place the mouse cursor at the
end of the line and press Shift +
Enter (Windows) or Shift + Return
(Macintosh) to begin a new line imme-
diately below it.

•	 On the new line, drag and drop the
article description node (rss:descrip-
tion) from the rss:item parent node..

	 In the next section, you will learn
how to use conditional regions to group
articles by topic.

Using Conditional Regions
	 To display only Flash-related articles
under the Flash heading, you need to
define a conditional region. I discussed
the XSL syntax for building condi-
tional regions in my previous article, XSL
Overview .
	 Now you will learn how to do this
visually, using the visual XML authoring
features in Dreamweaver 8:
•	 Select the paragraph containing the

article details by clicking the cor-
responding <p> tag from the Tag
Selector.

•	 Go to the XSLT tab from the Insert bar
and click the Conditional Region but-
ton:

•	 In the Conditional Region dialog box,
type the following line:

•	 contains(dc:subject,’Flash’)
•	 This is an XPath expression that returns

true when the subject node contains
the word “Flash.” When this condition is
satisfied, the article is displayed.

•	 Click OK to dismiss the Conditional
Region dialog box. Dreamweaver
displays a gray border labeled xsl:if
around the selected text.

	 To display all the articles about Flash,
you need to loop through all the items
from the RSS feed and evaluate the
test condition each time using a repeat
region. To do this, follow these steps:
•	 Select the <xsl:if> tag in the tag selec-

tor.
•	 Apply a repeat region, as I explained

earlier in this article.
•	 Save your page and preview it in the

browser. Yours will probably have more
articles since there have been more
Flash articles since the time of writing.

	 Before completing this XSLT frag-
ment, you need to display the remaining
articles under the “Other Technologies”
heading:
•	 Select the <xsl:for-each> tag from the

Tag Selector.
•	 Copy the selected content and paste

it on a new line below the “Other
Technologies” heading using the Copy
and Paste commands from the Edit
menu.

•	 The conditional region must display
only articles that do not contain the
word “Flash” in their subject node.
To do this, you need to change the
test condition. Select the <xsl:if>
tag corresponding to the second
conditional region on the tag selec-
tor.

•	 Dreamweaver displays the test condi-
tion for the selected region in the
Property inspector.

•	 Change the condition to this one:
•	 not(contains(dc:subject,’Flash’))
•	 This is simply the negation of the initial

XPath expression. It says: “if the subject
of the article does not contain the
word Flash, then display the article.”

•	 Save the XSLT Fragment and upload it
to your testing server.

	 To display the detailed feed in
a dynamic page, you’ll use the XSL
Transformation server behavior again:
•	 Open the homepage.html page and

save it as a dynamic page, correspond-
ing to your server model ColdFusion,
PHP, ASP, ASP.NET.

•	 Switch to Code View, select the code

lines 19 to 28 and delete them, to
remove the contents from the main
area of the page.

•	 Go back to Design view, and place your
mouse cursor inside the empty <div>
tag that should display the content:

•	 Apply the XSL Transformation server
behavior .

•	 Save your page and upload all files on
your testing server. Preview the page
in the browser and view the results:

Where to Go from Here
	 In this article, you have learned how
to use Dreamweaver 8 to consume a
remote RSS feed in your dynamic pages,
and process it in various ways. With the
visual XML authoring features, you can
now easily display XML data, define
repeat and conditional regions, and build
complex XPath expressions. The ways you
can use XML and XSL in your web appli-
cations are only limited by your imagina-
tion. The following articles can give you
more clues:
•	 In the article, Displaying XML Data, Jon

Varese walks you through using client-
side XSL transformations to process
XML documents.

•	 John Skidgel shows how a restaurant
website can use XML and XSL to
display its daily menu, in his article,
Creating XSLT Fragments for Server-
Side Transformations.

•	 Check out the Dreamweaver XSL FAQ.
•	 Visit the Dreamweaver Developer

Center XML and XSL category page for
more resources on learning XSL trans-
formations.

	 You can learn more about the RSS
tools out from this article on RSS vali-
dators, aggregators, and clients. If you
need a tool for creating your own RSS
feeds, check out MX RSS Reader-Writer,
a Dreamweaver extension from InterAKT
Online.

Marius Zaharia is the documentation

manager at InterAKT Online, a devel-

oper of professional tools for dynamic

web development. When he’s not writ-

ing articles and tutorials to guide web

developers, he enjoys learning new

things and exploring new technologies.

His interests range from web develop-

ment to politics and avantgarde elec-

tronic music.

22 • mxdj.com 3 • 2006

lash Video is rapidly changing
the landscape of video on the
web. Developers will need a
new set of skills and knowledge

relating to video editing, encoding, and
delivery. This article introduces the video
encoding process using the Flash 8 Video
Encoder, a simple yet powerful tool for
Flash developers.
	 In this article I will explain some of
the basics of video encoding and give
a step-by-step tour of the new Flash 8
Video Encoder with the On2 VP6 codec.
The On2 VP6 codec enables Flash Video
encoding at lower bit rates and larger
frame sizes. At the end of this article,
you will find a wide range of recom-
mended settings for VP6 encoding.
These settings provide a reference point
for you as you create your own custom
projects.

A Short History of Video on
the Web
	 In 1998 web video was all about Real
Media, which provided the best codecs
combined with the best server. Within a
few years, Microsoft had moved to the
forefront with Windows Media. Apple was
also on the move with QuickTime. For
many years, these three companies had
cornered the web video market. All had
their pluses and minuses depending on
the type of projects and client require-
ments. What they all had in common
were modern video and audio codecs
and the ability to deliver video through
progressive download or streaming tech-
nologies. What they lacked was an easy
way to add rich media and interactivity to
the audiovisual experience. Developers
were learning to use HTML plus TIME for

Windows Media, SMIL for Real, and all the
various technologies for QuickTime. None
of them provided a perfect solution for
delivering web video.

Experience with Flash Video
	 During the same period Flash became
the web standard for motion graphics
and interactivity on the web. A painless
plug-in installation process made Flash
Player practically ubiquitous on desktop
and laptop computers. Developers used
various approaches to integrate video
with Flash. Many used Flash to make
players for Windows Media, Real, and
QuickTime. Others vectorized video to
create an early version of Flash Video.
Some began creating the video as vector-
ized Flash, later exporting the contents to
video formats. The need for a fully inte-
grated Flash Video codec soon became
apparent.
	 The Spark codec brought integrated
video to Flash. It marked a tremendous
first step and was instantly accepted as a
new alternative for web video. Our clients
now use it to display television promos,
music videos, and educational clips.

The New On2 VP6 Codec
and How It Differs
	 Spark had its limitations at first. The
limiting factor on quality in web video
is the wide variance in download band-
width among clients. The most important
quality for a video codec intended for the
web is encoding efficiency—the codec
should be able to squeeze the most qual-
ity into the smallest possible bit rate.
This is especially important when using
streaming video. The new On2 VP6 codec
brings Flash Video up to speed with the

industry leaders in encoding efficiency so
that Flash Video projects can keep the bit
rate down and the quality up.

What You Should Know
About Video
	 If you are a Flash developer but new
to video, here are a few tips and pitfalls to
avoid:
•	 Frame size: Standard-definition NTSC

video—the format most commonly
used in the United States—is usually
digitized to 720 x 480 pixels. Ignore
these dimensions. Before encoding
the video, resize it to a 4 x 3 ratio—for
example, 640 x 480, 320 x 240, and
so on (see the next section). Or else
crop and resize it to a 16 x 9 ratio—for
example, 640 x 360, 320 x 180, and so
on. In case you ever work with various
wide-screen formats—such as 2.35:1—
crop the letterboxing, assume a 640-
pixel width, and get out the calculator.

	 Although these ratios are standard,
and should be used to avoid distort-
ing the video, the size of the encoded
video is not set in stone. The original
web video sizes used heights and
widths that were evenly divisible by
16. This was mandatory for many early
codecs. Although this is not necessary
for modern codecs, you should stick to
even heights and widths.

•	 Interlacing: When video is intended
for television, it is interlaced. Each
frame is made up of two fields of inter-
laced lines. On a computer monitor
this is seen as a comb effect because
one field is 1/60 of a second ahead of
the other. Interlaced video should be
deinterlaced before encoding.

 If the original source was film,

Best Practices for Encoding Video
with the VP6 Codec

A simple yet powerful tool for Flash developers
by william caulfield

vp6 codec

f

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

24 • mxdj.com 3 • 2006

the interlacing may occur in a
three-progressive-frames, two-inter-
laced-frames pattern. This common
method of telecining converts
the original 24 frames per second
(fps) film frames to 29.97 fps video
frames. It is possible to use inverse
telecine to return the video to its
original 24 frames.

•	 Frame rate: Your video projects will
usually be at 30 fps or will have been
inverse-telecined to 24 fps. If you want
to lower the frame rate, you should
use equal divisions of the source frame
rate. For 30 fps, use 15 fps, 10 fps, 7.5
fps, and so on. For 24 fps, use 12 fps, 8
fps, 6 fps, and so on.

Converting Frame Sizes
	 Frame size (mentioned in the previous
section) brings up a number of confusing
issues. Most confusing is the concept of
square and non-square pixels.
	 Television presents video as horizon-
tal lines. Computers present video as a
grid of pixels. Both use a 4 x 3 ratio for
standard video playback. The digitized
version is referred to as a “square pixel”
resolution.
	 Video is often digitized at what’s
called a D1 resolution, which means 720
x 480 for NTSC and 720 x 576 for PAL.
Within the world of the 4 x 3 standard,
these are referred to as “non-square pixel”
resolutions—NTSC pixels are wider at a
ratio of 1.1:1 or 11/10, while PAL pixels are
slightly taller at a ratio of about 0.915:1 or
54/59.
	 So why convert your video to square
pixels and take the 720 x 480 frame to
320 x 240 or other legacy format? On
one hand, that’s the way it’s always been
done. But there’s also no reason to use
the non-square pixel dimensions if the
encoded file will be played on a com-
puter screen.
	 Since the early days of video, D1 has
been the “legal” resolution. However,
these are not the resolutions at which the
vast majority of people watch video. As
I mentioned earlier, television presents
video at a 4 x 3 ratio screen size. When
computers came along, screen resolu-
tions did the same. Early computer moni-
tor resolutions were 480 x 360 and 640 x
480 pixels; my current favorite is 1280 x
960.
	 Practically speaking, you should use

the D1 resolution for videotape and DVD;
use a 4 x 3 ratio for computer playback.
A standard conversion from D1 to 4 x 3
would begin as follows:
•	 Capture at 720 x 480 pixels.
•	 Deinterlace or inverse-telecine the

video (see the previous section).
•	 Crop eight pixels from the left and

right sides (so it’s 704 x 480).
•	 Resize the video to 640 x 480 pixels.

	 From here you may crop out further
edge noise, crop out letterboxing, do fur-

ther resizing, and so on. Everything from
Step 4 onward is based on a 4 x 3 ratio.
	 There are times when I want to cap-
ture and de-interlace on the fly. In that
case, the process would be as follows:
•	 Capture at 360 x 240 pixels.
•	 Crop four pixels from the left and right

sides (so it’s 352 x 240).
•	 Resize to the video to 320 x 240 pixels.

	 Once again, the target is a 4 x 3 reso-
lution and the 360 x 240 resolution is only
an intermediary step.

3 • 2006 mxdj.com • 25

	 When you compare 720 x 480 and
640 x 480 video side by side on a com-
puter screen, you’ll see the most practical
answer of all as to why you want to make
the conversion: “That one looks stretched
out!”

Working with the Flash 8
Video Encoder
	 The Flash 8 Video Encoder is installed
in a separate directory as part of your
Flash 8 Professional installation. This
section walks you through some of its
capabilities and features. After you know
where and how to change the settings,
check out the tables at the end. They give
you some recommended settings for vari-
ous types of projects.
	 When you launch the Flash 8 Video
Encoder, you are presented with a simple
interface. You can add content to the
encoding queue by clicking the Add but-
ton or by dragging content to the queue
window. The default setting for encod-
ing is Medium Quality 400 Kbps. If your
source is 320 x 240 pixels or less, you may
be ready to click the Start Queue but-

ton now. These default settings will give
you good-quality VP6 video at the same
frame size and frame rate as the source.
	 If you need to change the settings or
use more advanced settings, highlight
one or more source files and click the
Settings button.
	 Tip: If you want to encode the same
source with different settings, highlight
the source, click the Duplicate button,
and then adjust the settings separately
for each instance of the source.
	 Within this simple settings dialog
box you can set your source to encode
to any of the Flash 7 or Flash 8 presets.
You can also rename the output file
and adjust (or trim) the in/out points
for the encoding process. If you need to
adjust further, click the Show Advanced
Settings button to reveal more encoding
options.
	 The Crop and Trim tab gives you
advanced options for cropping the frame
as well as information on the trim set-
tings.
	 Tip: To avoid any distortion when
cropping video, crop according to the

ratio of the source. For example, when
cropping a 4 x 3 source (240 x 180, 320 x
240, and so on) crop three pixels from the
height for every four pixels cropped from
the width. For extremely accurate trim
settings, click one of the trim tabs on the
bottom of the scrubber and use the left
and right keypad arrows to adjust the set-
tings.
	 On the Encoding tab you can create a
custom setting by making adjustments to
the frame rate, keyframe interval, frame
size, and the audio or video bit rate.
	 Tip: Never resize larger than the
cropped frame size of the source.
	 The most important variable is the
amount of movement in the clip. Fast-
moving music videos need a higher
bit rate. Talking-head videos can be
encoded using the lower bit rate set-
tings. Adjust audio settings according
to how important the audio is to your
project. Music should be in stereo and
go higher than 64 Kbps. Speech clips
can be in mono and go as low as 16
Kbps.

Where to Go from Here
	 Video for the web is an exciting field,
and there’s much more to learn about
it. You may be shooting your own video
or capturing from various sources. You
may need to learn more about the pre-
processing methods that yield a perfect
encode from a raw capture. You may
be ready to build your first Flash Video
player.
	 Many of these subjects are covered
in the Flash Video Developer Center, and
much more information will be coming
there. Start with the Flash Video Learning
Guide, which introduces Flash Video and
provides you with tools to develop your
skills.

Will iam Caulfield is video encod-

ing manager at Metro Encoding

in Los Angeles. His experience in

video compression goes back to

1998, a l i fetime in web years. After

spending three years as lead video

encoder for Starmedia Networks,

he started Metro Encoding in 2001

to encode video exclusively for

the web. Metro Encoding currently

encodes video for many of the

major f i lm studios and record labels

in Los Angeles.

26 • mxdj.com 3 • 2006

any animators use
Macromedia Flash for
detailed vector-based

animation. One of the strengths of Flash
is its versatile workflow and production
process. I have developed some custom
techniques that can help you create
and manage the various moving parts
of a complex animated character. In this
article I reveal some of my best-kept Flash
secrets while taking a single character
from pencil sketch to fully animated Flash
cartoon.

Drawing in Flash
	 Macromedia Flash offers several draw-
ing tools for creating cool characters
and more. Each tool differs from the oth-
ers and yields different stylistic results.
Some tools create larger file sizes while
other tools result in smaller files. As you
become more familiar with these tools,
you will learn to choose the tool that best
suits the artistic style you want and any
file size requirements you may have to
abide by. It’s simply a trade-off between
file size and download times and play-
back performance. In this section, I’ll take
a look at each of the Flash drawing tools
and discuss its pros and cons.

Brush Tool
	 The Brush tool is probably the most
versatile of all the tools, especially when
combined with a pressure-sensitive tablet.
	 Drawing with the Brush tool is the
same as drawing with shapes. It’s the tool
that feels the most natural when used
due to the support of pressure sensitivity
and tilt features. Wacom makes a series of
popular tablets that differ in size, include
a cordless and battery-free pen called a
stylus, and work great with Flash. Since
a Wacom tablet can work in conjunction
with your existing mouse, or replace your
mouse completely, its use goes far beyond

that of Flash alone. Many digital designers
use a tablet with any number of graphics
editors and animation programs, includ-
ing Adobe Photoshop, Adobe Illustrator,
and Macromedia FreeHand. But fear not:
If you do not currently own a tablet, you
can still use the Brush tool with one excep-
tion—both the tilt and pressure sensitivity
features will not be available.
	 If you do have a pressure-sensitive
tablet installed, selecting the Brush tool
will provide you with two subselections
that affect your line quality. At the very
bottom of the toolbox you will notice the
pressure sensitivity and tilt options. With
one or both of these options selected,
varied results occur when you use the
Brush tool in Flash.
	 The result on the left is a shape—
meaning, it has vector points on all sides.
The more points an object has, the bigger
the file size. I drew this particular shape
using a pressure-sensitive tablet. Notice
the tapered ends and inconsistent line
weight that result with varied amounts of
pressure applied to the stroke. I also drew
the shape on the right with the Brush
tool; in this case, however, I turned off the
pressure sensitivity setting.
	 The Brush tool offers several subselec-
tions to help you draw certain effects:
•	 Paint Normal: Paints over lines and fills

on the same layer
•	 Paint Fills: Paints inside a fill color and

outside of a shape (on the Stage)
•	 Paint Behind: Paints behind existing

fills and strokes
•	 Paint Selection: Enables you to paint

inside a selected fill only
•	 Paint Inside: Keeps you from going

outside the lines after you start paint-
ing inside a fill

Object Drawing
	 Object Drawing is a new feature in
Flash 8. It enables you to draw shapes as

individual objects that remain indepen-
dent of each other. Gone are the days
when you had to draw each shape on a
separate layer to avoid one shape “cut-
ting” into another. With Flash 8 you can
simply turn Object Drawing on or off as a
subselection of any of the drawing tools
(Brush, Pencil, Pen, Oval, and Rectangle)
under Options. For those of you familiar
with Macromedia FreeHand or Adobe
Illustrator, this is a familiar and welcome
addition to Flash.
	 Drawing a shape over an existing
shape without Object Drawing merges
the shapes together, causing one to
cut into the other. This is called Merge
Drawing mode. This mode can be use-
ful for cutting into shapes to create new
shapes.
	 When you draw a shape in Object
Drawing mode, it automatically becomes
an Object Drawing and cannot be
merged with other shapes. You can
overlay Object Drawings without fear of
cutting into them. This is useful in situa-
tions where you may want to reposition
objects or simply need to keep them
independent.
	 I created my trademark boy character
entirely with the mouse and the rect-
angle and oval tools. I never had to use
my Wacom tablet in combination with
the Brush tool. I could have easily chosen
the Brush tool, but using the shape tools
resulted in the ultra-clean line quality I
was trying to achieve. Often times the
Brush tool can create several unneces-
sary points that bloat file sizes and create
headaches when trying to edit the shapes

Designing and Animating
Characters in Flash 8

Versatile workflow and production process
by chris georgenes

animation

m

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

28 • mxdj.com 3 • 2006

later on. For the boy graphic, I was look-
ing for simple shapes and as small a file
size as possible.

Pencil Tool
	 The Pencil tool is the perfect tool
if you want a consistent line weight
throughout your image and if you need
to keep the file size as small as possible.
	 Lines drawn with the Pencil tool con-
sist of fewer vector points. A perfectly
straight line has only two points, one on
either end. A curved line has three points
or more depending on the number of
curves.
	 The Pencil tool also offers several line
quality modes:
•	 Straighten: This is a great option if

you want to draw very straight lines by
freehand. Even with a shaky hand, your
lines will “snap” straight after you finish
drawing your stroke.

•	 Smooth: If you use this option, your
lines will automatically be smoothed
while retaining the basic shape you
intended to create.

•	 Ink: This option leaves your line quality
unaffected. This is great for freehand or
loose-style drawings.

Shape Tools
	 You can select the fill and stroke color
through the Property inspector. Clicking
either swatch opens the color panel and
enables you to edit the stroke or color
choice.
	 You can even specify no color for the
stroke or fill by selecting the square with
the red diagonal line through it.

Pen Tool
	 To draw precise paths as straight lines
or smooth, flowing curves, you can use
the Pen tool. Create straight or curved
line segments and adjust the angle and
length of straight segments and slope of
curved segments.
	 With the Pen tool, you click to create
points on straight line segments, and
click and drag to create points on curved
line segments. You adjust straight and
curved line segments by adjusting points
on the line. You can convert curves to
straight lines and the reverse.
When creating curved lines you will
notice that Flash creates tangent handles
for each anchor point. The lines can be
edited later with the subselection tool

(White Arrow) by selecting an anchor and
dragging the tangent handles. Moving
the handles in relation to the anchor
point reshapes the curve.

Onion Skin Tool
	 The Onion Skin tool is located at the
bottom of the Timeline panel.
	 When you select the Onion Skin tool,
the application adds Onion Skin markers
to the playhead indicator of the Timeline.
You can drag these markers to expand
the number of frames before and after
the current frame.
	 Flash provides two flavors of onion
skinning:
•	 Normal onion skinning: The current

frame is shown in full color while
the previous and future frames are
dimmed progressively. This gives an
impression of a series of drawings cre-
ated on semi-transparent paper and
then stacked on top of each other.

•	 Onion skinning in outline mode: The
current frame is shown in full color
while previous and future frames are
shown as outlines. This is easier on the
eyes when working with several dif-
ferent keyframes before and after the
current frame.

Working with Symbols
	 Symbols are the very essence of what
makes Flash ... well, Flash. You can make
anything you draw or import into a sym-
bol. And in almost all cases you should.
Here’s why. When an object is converted
into a symbol, it automatically becomes
an item in the Flash document’s library.
Every Flash document has its own library
from which you can drag a symbol to the
Stage. When you do, the object on the
Stage is now referred to as an instance.
No matter how many instances of a sym-
bol reside on the Stage, Flash only needs
to load it once. This is how Flash delivers
streaming animations while maintaining
small file sizes. It’s extremely efficient to
reuse symbols as many times as possible.
You can also apply effects to instances
such as Scale, Tint, Alpha, and Brightness,
and apply motion tweens in combination
with one or more effects.
	 However, before I get too far ahead of
myself, I’ll introduce you to symbols and
their behaviors.
	 Create an object—anything, a simple
shape will do. Select it (Ctrl+A) and

then convert it to a symbol by choosing
Modify > Convert to Symbol or pressing
the F8 key. This opens the Convert to
Symbol dialog box.
	 In the Convert to Symbol dialog
box you can type a name for your sym-
bol, select one of three behaviors, and
determine the registration point of your
object. The following list explains what
each behavior is and what it means:
•	 Movie clip: Movie clips are dynamic,

which means they can be targeted
with ActionScript, the Flash program-
ming language. They can have any
number of layers and frames, but their
timelines are independent of all other
timelines. Think of a solar system: Each
planet is a movie clip, looping end-
lessly and independently around a sun,
which is your main Timeline.

•	 Button: Buttons have four states:
Over, Up, Down, and Hit. These are
represented as keyframes in a but-
ton symbol. You can place graphics
in any of these states and then apply
ActionScript to the instance of a but-
ton to add interactivity to your Flash
movie.

•	 Graphic: Graphic symbols are very
similar to movie clips with the excep-
tion that they are not dynamic and
cannot be targeted with ActionScript.
However, you can place a graphic sym-
bol inside a movie clip symbol. Graphic
symbols can have any number of
frames and layers. The most important
feature is that they will always be in
sync with the main Timeline and each
other. This is very important when try-
ing to create time-based animations.

3 • 2006 mxdj.com • 29

	 In this animation tutorial, I recom-
mend using the Graphic behavior. This
enables you to scrub the Timeline to see
your animation play while inside the
Flash authoring environment. Scrubbing
refers to moving the playhead back and
forth manually to play back the contents
of the Timeline. Movie clip symbols do
not play beyond Frame 1 of their con-
tents unless you test your Flash movie
(Ctrl+Enter) or export your movie as a
SWF file.

Cleaning Up Your Sketches
	 Every good design usually starts with
the time-tested pencil and paper. I’ve
had some of my most creative moments
during long and boring management
seminars and sometimes a doodle on a
cocktail napkin can be the inspiration for
a great character. Fact is, you never know
when or where you’ll be inspired, so keep
a pencil in your back pocket or behind
your ear at all times.
	 You can sketch in Flash using any
of the tools I already discussed. If you
have drawings on paper you’d like to use
as the basis for a Flash character, you’ll
need a scanner to scan and save them as
graphics files. Most scanners come with
software that will make this process easy.
Some of the more widely used graphic

formats that Flash can import are PNG,
GIF, JPEG, TGA, and TIFF.
	 After you import your sketch into
Flash, think about how to break it apart
into individual pieces. This is the hard
part. This is a very conceptual process
that depends ultimately on your style of
animation and the style of your character.
	 Form follows function, if I may borrow
a phrase from Volkswagen, and this is cru-
cial to your characters’ design. You must
visualize how you think your character
might move, which ultimately dictates its
overall design.
	 This character was made entirely with
the Oval and Rectangle tools. Notice how
I used the original sketch as a reference,
making subtle changes and adjustments
as I fine-tuned the image, tracing it with
the Flash drawing tools.
	 After creating a blank keyframe (F7)
next to your sketch, you can turn on the
Onion Skin feature to see a ghost of your
sketch. You can use any of the drawing
tools to draw, using the onion-skinned
sketch as your guide. I used the Oval tool
to create the head of the boy character.
When creating body parts and various
accessories for your character, try to imag-
ine and then draw the entire shape. You
must visualize your character as if it is truly
a 3D object existing in space. Even though
this is a two-dimensional format, thinking
like a 3D artist can help you visualize how
certain parts will be attached to others.
	 When you finish drawing an object of
your character, copy and paste it to a new
layer. I like to select it and convert it to a sym-
bol at this time. You can also name your layers.

Saving Time Placing
Symbols on Layers
	 I always convert my objects to sym-
bols and name them with a simple yet
descriptive naming convention. For
example, head1, eye1, mouth_wide, and
so on. However, I do not create names for
my layers at this time because there’s a
much easier and faster way. After all my
symbols are created and named appro-
priately, I simply select them all (Ctrl+A)
and copy (Ctrl+C) them. I now create
a new layer and paste them in place
(Ctrl+Shift+V). This places them all on one
layer, yet still as separate symbols. Delete
all your other layers so you end up with
just the one layer containing all of your
character symbols.

	 The next step is the coolest part.
Select all again and then right-click over
your character and select Distribute to
Layers.
	 Voilà! Flash has not only placed each
symbol on its own layer but has named
each layer based on their symbol names!
Nice, huh?

Saving Time Through Good
Document Management
	 If you want to edit the name of a layer,
double-click the layer name and type in a
new one. Giving layers a descriptive name
based on the kind of object it contains is
good practice in terms of Timeline and
file management. This is especially impor-
tant when working with more than one
artist—and even more so when working
within team environments.
	 Since Flash MX (version 6), you’ve had
the option to create layer folders. A layer
folder is simply a new layer that acts like
a folder to hold other layers. They can be
expanded and collapsed. This is extreme-
ly useful when dealing with multiple lay-
ers for several characters. You can create
a layer folder for each character and place
ll layers inside these folders, giving you
the option to collapse them all except for
the character you are working on. This
prevents endlessly scrolling through the
Timeline and is a huge timesaver.
	 Another way to manage your Flash
document is building an organized
library. As I mentioned earlier, when you
create or convert something to a symbol,
it automatically becomes an object in
the library of your movie. To open the
library select Window > Library or press
Ctrl+L. The library gives you a variety of
information and options for each symbol
contained in it. You can select each one
by clicking a symbol name and view a
thumbnail in the library preview window.
	 If the symbol contains an animation
within it, you also see a Stop and Play
button in the upper right corner of the
preview window. These buttons enable
you to preview the animation within this
preview window.
	 The upper right corner of the library
contains a pop-up menu with several
options. You can create a new symbol,
folder, font, or video. You can also rename
a symbol, move symbols to folders,
duplicate or delete a symbol, or edit and
obtain the properties of a symbol.

30 • mxdj.com 3 • 2006

Introducing “2.5D”
	 Just because tweening in Flash is easy
does not mean you can always rely on it
for creating convincing animations. Don’t
get me wrong: Tweening can be a great
timesaver and can get the job done, as
long as the job doesn’t require anything
more than simple objects moving around
the Stage.
	 But what if you could push the tween-
ing method to give more realism to your
character? What if you could harness its
simplicity and make it work in ways not
too many other Flash users have thought
of? What if you have learned everything
there is to know about tweening, go back
to the first 10% of that knowledge, and
take a left turn? Where would that take
you?
	 In this lesson, I’m going to reveal a
truly killer Flash animation technique that
will actually create what some consider
a convincing 3D effect. The cool thing is
you never leave the Flash environment;
you remain in the 2D realm. You are now
in a dimensional limbo. If it’s still 2D but
looks like 3D, then what exactly is it?
	 Welcome to the world of 2.5D anima-
tion.
	 Yup, 2.5D animation. I made that name
up. I don’t claim to have invented this
technique but so far the name, two-and-
a-half D, may be mine.

I have turned on the outlines feature
so you can see how each part of the
character’s body has been separated. This
is very important because motion tweens
require only one symbol per layer during
the tween. If you try to have two differ-
ent symbols on the same layer within the
same motion tween, the tween will break.
	 I have even taken the time to name
each layer. Although this is not necessary,
it does help to have layer names because,
as your Timeline grows, you eventually
start to scroll the Timeline more and
more. It is also important when working
in team environments where file sharing
is common. You can never be too orga-
nized.
	 After your Timeline is set up, you can
begin to apply motion tweens to your
character. For this example, I animated
only the symbols that make up the char-
acter’s head, so I made sure all other lay-
ers were locked to avoid making changes
to the wrong layer or layers.

Turning Heads—Part 1
	 First I created my keyframes where I
wanted the head to start and stop turn-
ing. Click and drag vertically from the top
to the bottom layer and convert to key-
frames (F6). Do this twice, keeping about
15 to 20 frames in between keyframes. In
my example, I made keyframes on frames
15 and 30.
	 Keeping the playhead on the frame at
which I wanted the character’s head turn
to stop, I edited each of the symbols on
the Stage using the Free Transform tool.
	 Follow my lead. I started with one of
the eyes. You need to imagine the eyes
wrapping around a sphere (the head).
If this were truly a 3D object, one eye
would get bigger as it comes closer
towards you. It also wouldn’t be as egg-
shaped, so making it wider is also a good
idea. Because my character’s eye consists
of three different symbols, I scaled them
all at once by holding down the Shift
key and selecting all three symbols. Then
I used the Free Transform tool to scale
them at the same time. Don’t worry
about being perfect at this point. You can
always fine-tune your animation later.
This is almost blind work, as you won’t
know exactly how it will look until you
apply the motion tweens.

	 Let’s move on to the nose. Because
the character is turning towards us, every-
thing closest to us should move from
right to left. If it were truly a 3D object,
the nose would be sticking straight out
from the head. To make this a little more
convincing, I turned it slightly downwards
as I moved the nose from right to left.
Don’t forget to scale it up a bit as it is also
coming closer towards the viewer.
	 Next I moved the other eye over
while scaling it larger and making it less
of an oval shape and more circular. I also
moved over both eyebrows and rotated
them slightly while scaling them up.
	 At this point I applied motion tweens
to each of the layers where I made these
edits. It’s time to reveal what I have actu-
ally done and determine whether it needs
further adjustments.
	 Don’t worry, there’s almost always
a lot of tweaking to get this effect just
right.
	 View the file mudbubble_boy.swf to
see the final animated effect.
	 Not a bad start, is it? With a few

simple edits with the Free Transform tool,
you can start to see the effect come to
life. It’s not perfect but at this point it
doesn’t have to be. You can continue to
tweak the amount of scaling, positioning,
and skewing of your elements until you
achieve the desired effect.

Turning Heads—Part 2
	 Next I address the remaining assets of
the character’s head to further emphasize
his head turning.
	 The most important part of this illu-
sion is convincing the viewer that this flat,
2D object has volume and mass. You also
need to trick the user’s eye into perceiv-
ing depth in the animation. You need
to imagine this character as being built
from a variety of 3D objects in space. If
the character were truly turning his head
in a 3D space, what is in the foreground
would travel in the opposite direction
from what is in the background. To help
you imagine this, picture the earth spin-
ning on its axis in space. The earth essen-
tially spins counter-clockwise. This means
the surface closest to us travels from right
to left. The surface farthest from us travels
from left to right. Let me apply this to my
character’s head.
	 Because the head symbol itself is
simply a flat oval shape, all I really needed
to do is skew it a little bit. I also chose
to nudge it a little to the right. I did this
because when someone turns to face
you, you see more flesh to the right of the
left eye. Also, because this head shape
is farther back from the facial features, it
should move slightly to the right a few
pixels. Don’t over-exaggerate some of
these movements. This is an effect best
executed with many subtle movements
rather than a few major changes. It’s the
sum of its parts that make up the whole
because several subtle animations com-
plete the overall dramatic effect.
	 Next I rotated the brim towards
the right side of the character’s head.
Remember, objects farther back move in
the opposite direction to objects in the
foreground.
	 I also used the arrow keys to nudge
the brim over to the right so it appears
to be behind the character’s neck even
more.
	 The same principle applies to his hat.
I skewed the hat to make it thinner while
moving it over to the right a few pixels.

3 • 2006 mxdj.com • 31

	 The ear got skewed a bit as well as it
moved upward and to the left.
	 Don’t forget the hair. I designed the
hair as three individual symbols so they
could be edited independently. As the
head turns towards the viewer, I skewed
them down towards the character’s eyes
and made them shorter as if they were
pointing towards the viewer a little more.
This is cheating the perspective a bit and
can be difficult to achieve. There is a limit to
how far you can skew and scale a symbol.
Remember, this effect is better when used
sparingly and in a subtle way. You can only
push the envelope so far. Less is more.
	 Next I added some motion tweens
to the rest of the layers to which I made
edits. If you followed my lead so far, play
back the results.
	 Not too shabby, is it? You clearly
can see his head turn as if it were a 3D
object. Remember that most characters,
if human, have two ears. To have the
character’s second ear coming around
the right side of his head, create a new
layer below all other layers. Copy the
existing ear and paste it to this new layer
in a blank keyframe midway between
the motion tweens (around Frame 22).

Then select Modify > Transform > Flip
Horizontal to flip it.
Position the ear on the right side behind
the head so it’s sticking out about half
way. This is about as much of the ear you
need to see.
	 Add a second keyframe on Frame 30
(where all the other keyframes reside).
	 Go back to the ear’s first keyframe
and reposition the ear almost completely
behind the head. I have converted some
of the other layers to outlines so you can
see the ear’s new position.
	 Now just apply a motion tween. Play
back your animation to see the ear reveal
itself as the head “turns” towards you. This
small detail adds an enormous amount of
realism to the head turn as it helps create
the illusion of the head being a rounded
sphere (this requires Flash Player 8).
	 Feel free to scrub the Timeline and
make adjustments to your symbols if
something doesn’t feel quite right. This
depends on how much of a perfection-
ist you are as well as on the complexity
of your character. The boy character in
this example is fairly complex, given the
amount of objects I used in his design.
	 Custom Ease In/Ease Out Panel (Flash
Professional 8 Only)
	 I’d like to add one more finishing
touch to the head turn. As you know,
motion tweens can look pretty static
due to their constant rate of speed. They
can look pretty jerky in their initial
state. Thanks to a new feature in Flash
Professional 8, however, you can add
some “easing in and easing out” to make
the transition softer. The trick is how to
ease in and out inside of a single tween.
	 The first step is to apply the motion
tween. You can do this in one of two
ways:
•	 Right-click the frames in between

the two keyframes. From the pop-up
menu, select Create Motion Tween.

•	 Select all layers with the selection tool
by clicking and dragging, highlight-
ing them all in black. From the Tween
drop-down menu in the Property
inspector, select Motion.

	 Notice the Edit button in the Property
inspector.
	 Clicking this button opens the new
Custom Ease In/Ease Out panel.
	 With the new Custom Ease In/Ease
Out panel you have a lot more control

over easing than you did with previous
versions. The Custom Ease In/Ease Out
panel displays a graph that represents the
degree of motion over time. The horizon-
tal axis represents the frames, while the
vertical axis represents the percentage of
change to the object.
	 The graph’s curve dictates the rate of
change of the object. When the curve is hori-
zontal (no slope), the velocity is zero; when
the curve is vertical, you don’t have any eas-
ing or delay to the objects’ movement.
	 If you select the Use One Setting for
All Properties check box, the current
curve is applied to all properties (Position,
Rotation, Scale, Color, Filters). If you
deselect this check box, you can apply a
separate curve to each of the properties,
as follows:
•	 Position: Specifies custom ease set-

tings for the position of an animated
object on the Stage.

•	 Rotation: Specifies custom ease set-
tings for the rotation of an animated
object. For example, you can fine-tune
how quickly or slowly an animated
character turns around to face the user
on the Stage.

•	 Scale: Specifies custom ease settings
for the scale of an animated object. For
example, you can customize the scale
of an object more easily so it appears
to be moving away from the viewer,
then coming closer, and then moving
away again.

•	 Color: Specifies custom ease settings
for color transitions applied to an ani-
mated object.

•	 Filters: Specifies custom ease set-
tings for filters applied to an animated
object. For example, you can control
the ease setting of a drop shadow that
simulates a change in the direction of a
light source.

•	 Play and Stop buttons: Lets you pre-
view an animation on the Stage using
all the current velocity curves defined
in the Custom Ease In/Ease Out dialog
box.

•	 Reset button: Lets you reset the veloc-
ity curve to the default, linear state.

	 Click the diagonal line once to add a
new control point. You can precisely con-
trol the motion of an object by dragging
the positions of the control points.
	 Using frame indicators (represented by
square handles), you click where you want

32 • mxdj.com 3 • 2006

an object to ease in or ease out (acceler-
ate or decelerate). Clicking the handle
of a control point (the square handles)
selects that control point, and displays the
tangent points (hollow circles) on either
side of it. You can use the mouse or the
keyboard’s keys to drag the control or tan-
gent points to new positions.
	 Tip: By default, the control points snap
to a grid. You can temporarily turn this off
by holding down the X key while drag-
ging the control point.
	 Clicking on the curve away from any
control points creates a new control point
to the curve. Clicking anywhere away
from the curve and control points dese-
lects the control point that is currently
selected.
	 To make an animation start gradually
and end gradually. I highly recommend
experimenting by creating and editing
control points and tangents and playing
back your animation using the Stop and
Play buttons in the lower left corner of
the panel. It won’t be long before you
have a good feel for the relationship
between the curve and its effect on the
animation.
	 Now play back your animation. Notice
how the head-turn eases in and then out
as it approaches its end. To animate the
head turning back again to its original
position, you only need to copy frames
from Frame 1 and paste them after the
tween you just created. Repeat the same
procedure by adding a motion tween,
and for easing in and out and you have a
character that can turn its head back and
forth in a cool way.

Applying Filters
	 Yes, the impossible is now possible in
Flash. Flash 8 introduces graphic filters
and blend modes, which the Flash com-
munity has accepted with open arms.
You can now apply effects such as Drop
Shadow, Blur, Glow, Bevel, Gradient
Glow, Gradient Bevel, and Adjust Color
to any movie clip instance. So have fun
with your character by applying a drop
shadow.
	 The first thing to do is place your
character in a movie clip symbol. In the
Timeline, click and drag to select all
frames across all layers. (Hint: start on
Frame 1 in the upper left corner and
drag diagonally to the last frame on
the bottom layer.) This highlights your

frames and layers in black. Select Edit
> Timeline > Copy Frames (or press
Ctrl+At+C) to copy the entire Timeline to
the Clipboard. (You could also right-click
anywhere on your highlighted frames
and select Copy Frames from the context
menu.) Now hold that thought until the
next step.
	 Open your Library (Ctrl+L) and from
the upper right drop-down menu, select
New Symbol > and then select Movie
Clip behavior and click OK. You are now
in Edit mode for this new symbol. Select
the first frame of the Timeline and select
to Edit > Timeline > Paste Frames (or
press Ctrl+Alt+V) to paste your selection.
(You could also right-click over Frame 1
and select Paste Frames from the context
menu.)
	 Return to the main Stage and create a
new layer. Locate the movie clip symbol
you just created in the Library and drag it
to the Stage on this new layer.
	 Delete all other layers that contain
your original character. At this point your
Timeline should have one layer and one
movie clip symbol containing your char-
acter animation.
	 There are two kinds of shadows you
can create. A standard drop shadow cre-
ates a shadow below the instance that is
slightly offset from the original. This type
of effect is often very flat and similar to a
shadow cast against a wall or any other
flat surface. It is not very convincing if
you are trying to achieve a shadow cast
on the ground. For a more realistic shad-
ow effect, you need to add a few simple
steps.
	 Duplicate the movie clip instance and
place it behind the original instance. (You
can keep the duplicate on the same layer
and arrange it behind the original instance,
or paste it to a new layer below the original.)
	 Select the duplicate instance and, in
the Filters tab of the Property inspector,
select Drop Shadow from the Plus (+)
menu. Next, adjust the strength level to
around 45% and select Hide Object. This
hides the movie clip object but reveals
the Drop Shadow Filter properties. You
can make further adjustments by set-
ting Quality to Low, Medium, or High,
or modifying the amount of blur, color,
angle, or distance of the blur effect from
the original graphic.
	 To prevent this effect from looking
too much like a drop shadow against a

flat wall behind the original object, use
the Free Transform tool to skew the fil-
tered movie clip instance. This technique
requires some trial and error before you
can apply it successfully. Squash and
skew the instance until it looks as if the
shadow is cast on a floor. You may need
to reposition the instance to make this
look right.
	 Test the movie and see the effect
come to life.
	 When combining looping anima-
tions with several other looping anima-
tions, you can achieve some sophisti-
cated visual results, (this requires Flash
Player 8).
	 In this sample you can see how the
drop shadow effect adds an exciting
dimension to the animation. This anima-
tion is a series of movie clips containing
looping animations of the boy and dog
characters. In a future article I will explain
how small animated loops can yield a lot
of mileage to your movies.
	 I hope this article has helped you
sharpen your Flash design and animation
skills. There are several more anima-
tion techniques that you can achieve
with Flash, such as full animation (often
referred to as frame-by-frame), shape
tweens, and image sequences from video
or 3D animation programs. There are also
a number of cool plug-ins available from
other designers and animators that can
help speed up your Flash workflow. Look
for future articles that explore these tech-
niques and tools.

Chris Georgenes is

a full-time freelance

artist, animator, and

all-around designer

for the web, CD-

ROM, and television.

His clients include

Pileated Pictures,

LucasArts, Universal

Records, Plot

Developers, and

AOL, among oth-

ers. He maintains

www.mudbubble.

com as his online

portfolio and www.

keyframer.com as

his Flash tutorial

website. Chris is also

a member of Team

Macromedia.

3 • 2006 mxdj.com • 33

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED

NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE
VISIT WWW.AJAXSEMINAR.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED

NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE
VISIT WWW.AJAXSEMINAR.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

he Sharable Content Object
Reference Model (SCORM ®)
Shareable Content Object (SCO)
Presentation Engine (S2PE) is a

SCORM content presentation application
prototype, which allows content to be
abstracted from the playback mechanism.
The engine removes the burden of pro-
gramming Learning Management System
(LMS) communication from the content
author by automatically handling all com-
munication for them. Rather th an pro-
gramming content, the author describes
content through Extensible Markup
Language (XML) files, which the engine
interprets to render the content. The
engine is robust in its support for graph-
ics, text, video, audio, 3D, Shockwave, and
Flash content. The engine also supports
quizzes, interactivity, and synchronization
of events.

Preface
	 After the September 11 attack against
the United States, the U.S. Department
of Defense initiated a pilot university
program for first responders. The initial
classroom course, created as a collabora-
tion between the U.S. National Guard,
Indiana University of Pennsylvania, and
Concurrent Technologies Corporation,
was a three week paperwork-intensive
program covering topics related to
chemical, biological, radiological, nuclear
and high-yield explosive attacks. Post
review of the pilot program indicated the
need to bring the students least familiar
with the topics to a higher understand-
ing prior to entering the classroom for
advanced work.
	 As part of the Department of Defense
(DoD), the National Guard delivers learn-

ing material through a distributed LMS
learning network based on the SCORM
standard. These initial lessons poten-
tially would cover thousands of pages of
material. Traditional methods of SCORM
content creation would require hand
building each lesson with HTML, Director,
Flash, and so forth. As a proof of concept,
the SCORM SCO Presentation Engine
(S2PE) was created using Macromedia
Director from Adobe. The purpose of the
concept was to demonstrate that individ-
uals could create engaging, voluminous
SCORM 1.3 content quickly with little to
no programming skills.

Introduction
	 This article presumes the reader has a
basic understanding of SCORM. For spe-
cific information about SCORM visit www.
adlnet.org.
	 The introduction of SCORM as a
delivery mechanism for learning content
has created many new challenges for
developers and instructional designers.
Developing and implementing even
straightforward content has become diffi-
cult for many individuals and groups who
are otherwise competent at their craft.
The ability to understand and merge
the necessary multiple technologies is
a requirement that not all are able to
match. These factors slow the implemen-
tation and acceptance of SCORM outside
of those groups who are mandated to use
it.
	 There are limited existing applications
that can be of assistance in addressing
areas of authoring content for SCORM.
In the commercial software arena, most
companies have only stuck a toe in the
SCORM waters to test it out. Presently

there is no complete development tool
for the creation of SCORM content. No
product addresses LMS communication
and content authoring.
	 To facilitate the growth of SCORM
and the spread of the LMS to the point
of being as common as the web browser,
users need simplified way to create con-
tent. Thus, the S2PE was created, using
Director, as a proof of concept to meet
that need.
	 The S2PE engine allows content
authors to describe SCO content through
associated XML files. Interpretation of
those files, content layout, and all LMS
communication is automatically handled
by the presentation engine. The content
is described external to the application,
creating a natural separation from the
learner interface.
	 As the application stands alone, any-
one with nominal XML skills can create
SCORM content successfully. Instructional
Designers can now implement their
vision without relying on a program-
mer. Additional benefits are rapid cre-
ation times for content, simple content
updates, and reduced downloads for the
learner.

Presentation Engine
	 The Presentation Engine (PE) is light-
weight at about 100 Kbytes. This includes
varying levels of support for graphics, 3D,
text, audio, video, Flash, and Shockwave.
The additional custom JavaScript librar-
ies, necessitated by SCORM, add an addi-
tional one time download of another 100
Kbytes.
	 The PE is divided into two parts. The
Player Module (PM) is responsible for
determining the order of play and intra-

Director and SCORM 1.3 SCORM
SCO Presentation Engine (S2PE)

Sharable Content Object Reference Model
by kraig mentor

scorm

t

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

SCO Presentation

Engine (S2PE)

© Copyright

Concurrent

Technologies

Corporation 2006

36 • mxdj.com 3 • 2006

SCO branching. The Content Module (CM)
is responsible for LMS communications
and displaying content to the learner.
	 During initial loading of a SCO, the PM
is loaded into an empty HTML shell page.
This shell page contains a placeholder
where the Shockwave file is eventually
loaded. The scr tag for the HTML shell
page is initially set to an empty string
value (Listing 1).

<param name=”src” value=””>

<embed src=”” ... >

When the shell page is loaded, the mani-
fest item’s parameter tag is used to point
to the Shockwave PM dcr file for load-
ing into the scr placeholder tag. In this
example, the filename of the PM is player.
dcr (Listing 2).

<item identifier=”ITEM-9298b6c0-

a695-11d9-9” identifierref=”intro”

parameters=”?dcr=player.dcr&xml=:::

pl_intro.xml”>

 ...

 ...

</item>

	 The learner initiates the above
sequence of events by making a SCO
selection from the LMS Table of Contents
(TOC).
	 In much existing SCORM content, it
is not unusual to find a unique HTML file
for each page within a SCO. The approach
presented here allows all screens for
every SCO to share this single HTML
page. This can eliminate hundreds or
even thousands of HTML files from need-
ing to be authored and downloaded for a
SCO. The result is simplified development.
Since the PM is a dedicated playback file
common to all SCOs, it is reasonable to
ask why its path would need to be speci-
fied for each manifest item’s parameters.
While it is true that the playback file
remains the same for each SCO, there
may in fact be a situation where a unique
PM file will need to be written that has
capabilities beyond or completely unre-
lated to the generic PM. Although includ-
ing an identical path to the PM dcr may
seem redundant, it leaves the door open
to accommodate alternative scenarios
should they arise.
	 Once the PM is loaded into the shell
it reads in the second manifest item’s

parameter, an XML file path. This XML
file is referred to as the Intra Content
Navigation Model (ICNM) (Listing 3).

<item identifier=”ITEM-9298b6c0-

a695-11d9-9” identifierref=”intro”

parameters=”?dcr=player.dcr&xml=:::

pl_intro.xml”>

 ...

 ...

</item>

	 This ICNM contains the sequence of
screens that comprise the selected SCO.
The sequence of screens to be delivered
is called a playlist. For example, the sim-
plest of all SCOs has but a single entry in
its playlist. This equates to a SCO having
only one screen (Listing 4). Once the PM
has successfully loaded the playlist, an
internal navigation structure is built and

used for intra-SCO navigation. When that
navigation structure is completed, the PM
automatically loads the content of the
first item in the playlist for presentation.
For the moment, the important point is
that for each item in the playlist, there is
one corresponding screen presented to
the user. I explore how that happens later.

<playlist type=”linear”>

 <item dcr=”:::content.dcr”

xml=”:::intro_01.xml”/>

</playlist>

	 A more complicated SCO might have
several screens to present to the user
(Listing 5). In this case, each time the
learner selects the SCO’s internal Next
button, the next item in the list is loaded.
The playlist would present the user with
four successive screens for this SCO.

3 • 2006 mxdj.com • 37

<playlist type=”linear”>

 <item dcr=”:::content.dcr”

xml=”:::intro_01.xml”/>

 <item dcr=”:::content.dcr”

xml=”:::intro_02.xml”/>

 <item dcr=”:::content.dcr”

xml=”:::intro_03.xml”/>

 <item dcr=”:::content.dcr”

xml=”:::intro_04.xml”/>

</playlist>

	 While this is a straightforward con-
cept for linear presentations, a complete
solution needs to include SCO screens,
which contain buttons allowing branch-
ing within the SCO. In fact, the implemen-
tation of the playlist allows the embed-
ding of playlists within playlists to n levels
(Listing 6).
	 In the code sample below, the learner
views the content of XML file 01.xml, then
proceeds to 02.xml. At that screen there
are two navigation buttons, each taking
the user down a different path. See the

button identifier in the the playlist tag as
button=”A”, and so forth. When the but-
ton attribute is included in a playlist tag,
the parent screen automatically renders
the necessary navigation controls. You do
this through the CM, which I discuss later.

<playlist type=”linear”>

 <item dcr=”:::content.dcr”

xml=”:::01.xml”/>

 <item dcr=”:::content.dcr”

xml=”:::02.xml”>

 	

 <playlist type=”linear”

button=”A”>

 <item dcr=”:::content.

dcr” xml=”:::03.xml”/>

 <item dcr=”:::content.

dcr” xml=”:::04.xml”/>

 </playlist>

 	

 <playlist type=”linear”

button=”B”>

 <item dcr=”:::content.

dcr” xml=”:::09.xml”/>

 <item dcr=”:::content.

dcr” xml=”:::10.xml”/>

 <item dcr=”:::content.

dcr” xml=”:::11.xml”/>

 </playlist>

	</item>

	<item dcr=”:::content.dcr”

xml=”:::05.xml”/>

 <item dcr=”:::content.dcr”

xml=”:::06.xml”/>

</playlist>

	 Regardless of the playlist structure,
the PM automatically loads the first
item in its playlist. It does so by passing
control of playback to the CM. The PM is
released and the CM is in control for the
duration of the SCO’s life. It’s important
to the content author that he or she can
add content screens to a SCO without
rewriting or recompiling any code. With
just an XML editor or a simple text editor,
all the desired changes can be made and
instantly reviewed within the LMS envi-
ronment.
	 The CM is responsible for presenting
the content to the learner and handling
any intra-SCO navigation. Each screen
the user sees is a new instance of the
CM. The CM renders everything that
the learner sees on the screen. The CM
loads its layout and content information
from an external, XML-based Content
Presentation Model (CPM) file. The CPM
file specifies content layout information
for a single screen. The CPM contains
information about text, graphics, video,
positioning, fonts, and so forth
	 An entry in the CPM file might specify
an image to load and the location on
the screen to render the image. Or, for
text, a CPM entry could specify the text
string, its font, leading, color, and so
forth. During playback, the CM is respon-
sible for communicating with the LMS.
If a designer had placed an image at a
horizontal location of 300 pixels but later
decides it should be at 290 pixels, there
is no need to open Director. Just edit
the appropriate XML source file and the
change is automatic.
	 Sharing the playback engine across
all SCOs ensures repeatability and con-
trol. Updates to the PE are universal and
immediately reflected in all SCOs upon

38 • mxdj.com 3 • 2006

re-import into the LMS. The process
removes typical SCORM authoring meth-
ods of unique code for every SCO and
HTML page.

Playback Support
	 One goal of the S2PE is to leverage
the content creator’s vision. The support
for a variety of media asset types includes
graphics, 3D, text, video, audio, Flash
and Shockwave. Their implementation
by the author is not limited to merely
placing elements on the screen. Support
for event synchronization allows media
elements to have their location, trans-
parency, visibility, z-ordering, playback
rates, video locations, and so forth set
and tweened automatically at runtime.
All necessary mathematical in-between
calculations are performed by the PE. The
author need only specify key event times.
	 For many designers, they’re content
appears on screen as delivered to the
programmer. Yet, with the S2PE they are
able to easily set many properties that
they relied on the programmer for. For
example, the “render” tag maps directly
to Director’s sprite “ink” property. “Blend”,
“background” color ,etc are all exposed
to encourage creativity. For many design-
ers this is something new to work with.
In general, properties of sprites map to a
specific tag within the CPM XML file.
	 Multi-state buttons, graphical and textu-
al hotspots, pop-up images and pop-up text
all offer additional capabilities in support of
the author. All on screen items are referred
to as media elements. Nearly all media ele-
ments share a set of common attributes.
	 Specific media elements have their
own applicable attributes.

Graphic
	 Supported Formats (PNG, JPG, GIF,
BMP, TIF, PSD) Note: PSD (Photoshop) files
depend on the state of the PSD when
it was last saved. Hidden layers are dis-
carded and the visible layers are flattened
to yield the final image.

Inherits from Media Element
Properties
	 Any media element may have
hotspots assigned to it. Hotspots are
described as areas within a sprite area.
This is similar to an HTML image map. For
textual elements, it is done on a per word,
or word range basis. Hotspots support
unlimited pop-up graphics and text for
each spot.
	 Though a basic overview, the previous
information allows inspection of a simple
CPM XML file (Listing 7).

<graphics>

 <graphic filename=”:::ashleym.png”

origin=”320,200”/>

</graphics>

 	

<text>

 <head render=”bgtransparent”>

Adobe > Thank You Director</head>

 <prompt color=”255,255,255”

align=”center” render=”bgtransparent

”/>

</text>

	 All graphics are enclosed within the
graphics tag. In this case there is only the sin-
gle ashleym.png file. Also included with that
graphic’s information is its layout location.
	 This XML file does not indicate any
text to be rendered on screen but does

take advantage of the built-in support for
header text and a user prompt. The next
example includes audio, graphics, and a
linked Director movie (LDM) containing
an independent 3D world (Listing 8).

<audio>

 <synch filename=”:::shelbym.mp4”

start=”-1” stop=”-1”/>

</audio>

<graphics>

 <graphic filename=”:::type4.jpg”

origin=”center,center” blend=”60”/>

</graphics>

<ldm>

 <ldm filename=”:::butzi.

dcr” origin=”center,center”

visible=”true”/>

</ldm>

<text>

 <head>Compound/Element >

Compound</head>

 <prompt>Click Continue.</prompt>

</text>

	 Note that in the audio section there
are start and stop times listed. The val-
ues of -1 indicate play from start to end.
However, any value in 1/60 second incre-
ments may be used.
	 The graphic section places the loca-
tion of the image at “center, center”. The
XML specification allows this value as
shorthand. Besides specifying the term
“center” or absolute pixel locations, you
can also use fractions such as “1/4” to
indicate one-fourth of the way in the
specified direction.
	 Finally, Listing 9 is a more complex
XML file. This is a partial list of a file used
to run a 60-second sequence of anima-
tion, art, video, and music. The main fea-
ture to note is the synch attribute, which
is used to interpolate media element
states in reference to the movie time of
the audio filename at the top of the file.

<audio>

 <synch filename=”:::shortPhili.

mp4” start=”-1” stop=”-1”/>

</audio>

<video>

40 • mxdj.com 3 • 2006

 <video filename=”:::drmiller.mp4”

origin=”center,center” width=”640”

height=”420” visible=”0”>

 <synch>

 <playrate>

 <playrate event=”start”

playrate=”1.0”/>

 <playrate event=”100”

playrate=”6.0”/>

 <playrate event=”2800”

playrate=”0”/>

 </playrate>

 <visible>

 <visible event=”start”

visible=”1”/>

 <visible event=”100” vis-

ible=”0”/>

 <visible event=”110” vis-

ible=”1”/>

 </visible>

 <playtime>

 <playtime event=”start”

playtime=”1100”/>

 <playtime event=”1850”

playtime=”4600”/>

 <playtime event=”2450”

playtime=”11000”/>

 </playtime>

 </synch>

</video>

<graphics>

 <graphic filename=”:::collage_

01.jpg” origin=”center,center” vis-

ible=”0”>

 <synch>

 <zoomstack timebase=”audio”>

 <zoomitem file-

name=”:::collage_01.jpg” target-

rect=”85,110,90,115” method=”rect”

direction=”in” prescale=”true”

steps=”30” blendinat=”-1” blend-

outat=”925” startzoomat=”900” stop-

zoomat=”951”/>

 <zoomitem filename=”:::

common:images:collage_02.jpg” target-

rect=”85,110,90,115” method=”bestfit”

direction=”in” prescale=”true”

steps=”30” blendinat=”951” blend-

outat=”1100” startzoomat=”925” stop-

zoomat=”1150”/>

 <zoomitem filename=”:::

common:images:collage_03.jpg” target-

rect=”85,110,90,115” method=”bestfit”

direction=”out” prescale=”true”

steps=”30” blendinat=”1200” blend-

outat=”1400” startzoomat=”1150” stop-

zoomat=”1500”/>

 </zoomstack>

 </synch>

 </graphic>

 <graphic filename=”:::collage_

10.jpg” origin=”200,-100” width=”100”

height=”75” blend=”100”>

 <synch>

 <zorder>

 <zorder event=”3130”

top=”1”/>

 </zorder>

 </synch>

 <hotspots click=”0”>

 <hotspot item=”left”

rect=”10,10,90,65” >

 <popimage filename=”:::

sm_collage_10.jpg” origin=”350,130” />

 <popText origin=”220,40”

width=”275” regH=”left” regV=”top”

italic=”true” pt=”18” text=”end”/>

 <popText align=”center”

origin=”250,95” width=”250”

regH=”left” regV=”top” pt=”26”

bold=”true” text=”End”/>

 </hotspot>

 </hotspots>

 </graphic>

<graphics>

	 With regards to quizzes and interac-
tion within the LMS, all scoring, determi-
nation of correctness, objective mapping,
and LMS interaction is handled automati-
cally. An initial library of approximately
150 JavaScript functions dedicated to
LMS interaction supports all required
messaging between the S2PE and the
LMS. For clarity, the libraries are split into
SCORM sections dealing with the API,
Comments From Learner, Comments
From LMS, Date and Time, Interactions,
Objectives, SCO’s, and Sequencing and
Navigation. Whether you implement
SCORM content with Director or some
other method, JavaScript is a requirement
for communication with the LMS.

Future Vision
	 The current working version supports
limited messaging between media ele-
ments. Increasing that support will allow
media elements to interact with greater
detail and robustness.

	 The inclusion of support for speech
and accessibility standards will round
out the needs of most content. Director
offers the most flexible 508 authoring
solutions available. It is a little known
fact that the Windows version of Director
supports the Microsoft SAPI XML TTS.
As such, Director is a natural for notably
exceptional speech within SCORM con-
tent.
	 Throughout it all, the vision remains
clear, bringing LMS and SCORM into the
public arena by facilitating the creation
of robust content that can present one’s
vision.

Additional Resources
•	 Advanced Distributed Learning The

official site for all things SCORM. http://
www.adlnet.org/

•	 Advanced Distributed Learning SCORM
2004 Plug-In Technologies Example.
http://www.adlnet.org/downloads/204.
cfm Includes both Director and Flash
examples of LMS communication.

	 US Army Training Support Center
SCORM v1.2 Business Rules and Best
Practices http://www.atsc.army.mil/itsd/
imi/bus_rules.asp Refers to SCORM 1.2
but relevant.

Kraig Mentor is a developer for

Concurrent Technologies Corporation

(CTC) of Johnstown, PA (www.ctc.com).

CTC is an independent professional ser-

vices organization that provides manage-

ment and technology-based solutions

to a wide variety of clients representing

state and federal government as well as

the private sector. Mr. Mentor recently

presented the content of this article at the

International Plugfest II in Taipei, Taiwan.

He has spoken at other SCORM confer-

ences on the topics of JavaScript LMS

communication and has written articles

for the Advanced Distributed Learning

(ADL) Web site. His work on various proj-

ects has earned him eight Addy awards

as well as an Excellence in Education

Award from the National Hydropower

Association. Prior to joining CTC, Mr.

Mentor worked as a developer on the

Director product line at Macromedia,

San Francisco. Other past areas of work

include automation, robotics and elec-

tronics. He may be contacted at kraig@

ctc.com.

3 • 2006 mxdj.com • 41

his series presents an open-source
architectural framework to Flex
developers called Cairngorm. In
this series I explain the thought

leadership behind Cairngorm, the design
challenges that Adobe feels Cairngorm
addresses best, and the projects for
which Cairngorm is an appropriate skel-
eton for development.
	 Using the Cairngorm Store sample
application, this series explains what
Adobe Consulting thinks about scoping,
estimating, and delivering a Rich Internet
Application (RIA) when basing it on
Cairngorm from the start. I also explain
the various Cairngorm concepts and take
a deep dive into the implementation of
the Cairngorm Store.
	 Finally, I demonstrate some of the
principal benefits of delivering an RIA
based on this established microarchitec-
ture by adding a new feature to the exist-
ing Cairngorm Store application from the
point of view of a Cairngorm developer.
By this stage in the series, you see the
benefits for yourself.
	 Cairngorm isn’t the only way to build
a Rich Internet Application, of course.
However, Adobe Consulting has helped
numerous customers and partners suc-
ceed in delivering large-scale Flex RIAs
by building upon their preexisting Flex
application development knowledge
using the information contained in this
series.
	 This comprehensive introduction cov-
ers the full spectrum of Cairngorm, from
understanding the motivation and con-
cepts of Cairngorm to architecting your
own applications upon this established
and supported microarchitecture.
	 Instead of delving into code from
the outset, the first part offers a context
and background for understanding the
Cairngorm architecture. I discuss frame-
works and clarify the difference between
an application framework and an archi-
tectural framework. I then explore design
patterns and introduce the microarchitec-

ture concept. Finally, I give a brief back-
ground on the emergence of Cairngorm:
its history and where it is headed—its
roadmap.
	 You will develop a retail com-
merce application using both Flex and
Cairngorm on the client-side tier and a
new or existing J2EE infrastructure on the
server-side tier.

Clarifying the Definition of
Frameworks
	 In software development, the term
framework is one of the most overloaded
and overused terms within and between
development teams. When develop-
ers write large pieces of code that they
consider significant enough to consider
leveraging on other projects, they tend
to supplement the code with this term.
Thus there are many types of frameworks:
persistence frameworks, transaction
frameworks, logging frameworks, aspect-
oriented frameworks, animation frame-
works, unit-testing frameworks, and the
like.
	 Before I delve into the discussion of
the Cairngorm framework, it’s important
that I explain an important distinction
that the Adobe Consulting team shares
with customers and partners about
frameworks—specifically the distinction
between application frameworks and
architectural frameworks.

Application Frameworks
	 Flex is a tremendous example of
an application framework. In fact, the
forthcoming release of Flex 2.0 actually
distinguishes the application framework
piece—often called the “app model”
within Adobe—in its architecture. The
Flex Framework 2.0 provides a rich collec-
tion of class libraries that provide highly
granular functionality that developers
can use to create custom code. For
instance, the Flex 2.0 Collections API pro-
vides application developers with all the
base-level functionality needed to create

managed data collections. Application
developers then compose these collec-
tions together into higher-level objects
that are relevant to their particular
application. Furthermore, application
frameworks such as Flex typically expose
application-level services such as history
management, layout management, cur-
sor management, exception handling,
internationalization, logging, and so
forth.
	 When a framework provides highly
granular class libraries that give a high
degree of flexibility to application devel-
opers, or when a framework provides
application-level services that are useful
across multiple developer projects, I call it
an “application framework.”
	 Another excellent example of an
application framework is the FAST frame-
work that Adobe Consulting has used
with customers and partners with great
success. The FAST framework, as John
Bennett explains in his article, Faster
Development with the Flex Application
Starter Toolkit (FAST), provides applica-
tion services for logging and tracing, and
value-add class libraries that extend the
Flex Framework’s own implementation of
RPC data services in Flex 1.x.

Architectural Frameworks
	 Architectural frameworks are dif-
ferent beasts entirely. Typically the job
of an architectural framework is not to
provide any additional services to appli-
cation developers except an infrastruc-
ture around which an application can
hang—to provide the skeleton or internal
structure of moving parts, around which
the flesh and muscle particular to a busi-
ness domain can be layered.
	 In other words, an architectural frame-
work provides a generic starting point for the
technical architecture of your application.

Applying Design Patterns
	 It is hard to talk about technical archi-
tecture without paying attention to an

Developing Flex RIAs with Cairngorm
Microarchitecture

Using the Cairngorm Store sample application
by steven webster

ria

t

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

42 • mxdj.com 3 • 2006

important movement in software engi-
neering called design patterns.
	 Without going into detail about
software design patterns, let me just say
that the expression “there is nothing new
under the sun” is never more true than
in the discipline of software engineer-
ing. Developers often find themselves
addressing engineering problems that
appear with regular consistency in appli-
cation development. Almost as consistent
as their appearance is the repetition of
solutions for these problems. Wherever
such recurrences occur, you can identify
the solution as a “pattern,” indicated by
facing the design challenge and finding
the appropriate design solution.

The Lure of Design Patterns
	 Now a warning: When software engi-
neers first encounter design patterns,
the realization of a catalog of solutions
to their engineering problems can be
a powerful one. Often developers rec-
ognize a subset of problems they have
encountered and then seek to under-
stand other design patterns and where
they might apply them. However, the old
adage “when all you have is a hammer,
everything looks like a nail” can apply
here. You can often find “pattern over-
load” in an application, where developers
abdicate responsibility for classes and col-
laborations and, instead, shoehorn every-
thing into a Factory, Flyweight, Observer,
or Decorator.
	 Used appropriately, however, design
patterns can be a powerful tool in a
developer’s toolbox. Design patterns not
only offer common solutions to prob-
lems, but the way developers apply them
to an application indicates the intention
of the implementation. For instance,
whenever you see a Singleton in a code
base, you understand that this is a class
for which there should be only one
instance. Likewise, whenever you come
across a Factory, you recognize that there
are a number of different objects that a
manufacturing class can construct.
	 Rising through the technical archi-
tecture—from the ground-zero of
detailed implementation towards the
helicopter view of high-level system
design—you can begin to appreciate
the design in other, recurring ways. Like
the Mandelbrot, you begin to recognize
higher order structure as your lower

level structure collaborates. Thus design
patterns begin to coalesce in repeatable
ways, offering higher level solutions to
higher level design problems.

Microarchitecture as a
Composition of Design
Patterns
	 Although a design pattern might have
offered a specific solution to a specific
problem (in this case, using the Singleton
pattern for the problem of ensuring that
only one instance of a class ever exists),
when a collection of patterns regularly
collaborate with one other, their assem-
bly is for the greater good of a greater
aim: “How do I intercept user gestures
and ensure that a worker class assumes
responsibility?” or “How do I centralize
the business logic that might be used
in more than one context on the client,
even though it is actually implemented as
a collection of service calls to a number
of different types of services on a collec-
tion of servers?”
	 When you start to assemble collec-
tions of design patterns into these higher
order but nonetheless highly generic sys-
tems, you communicate these as “micro-
architectures.”
	 Let’s take this high-level discussion
of application frameworks, architectural
frameworks, design patterns, and micro-
architectures and put it into context.
When Adobe Consulting speaks about the
Cairngorm framework, we are speaking
about an architectural framework—a start-
ing point for technical architecture that is
generic enough to apply in most cases to
medium-to-complex Flex RIAs.
	 Furthermore, when we speak about
the Cairngorm framework, we do not
mean some monolithic architecture that
limits your freedom as a developer to
solve problems. Rather, when we advo-
cate the Cairngorm framework, we mean
the following:
•	 A lightweight framework that offers a

little prescription for some of the chal-
lenges consistent with the Flex RIAs we
have encountered

•	 Using a small number of relevant
design patterns, where the moving
whole is ever so slightly greater than
the sum of its static parts

•	 A microarchitecture for RIA devel-
opment—a starting point for your
technical architecture that solves the

problems as they have been solved
successfully before

	 If we can see further, it is because we
are standing on the shoulders of giants.

A Short History of
Cairngorm
	 iteration::two, a software consultancy
that Alistair McLeod and I cofounded, rec-
ognized that many of the design challenges
faced and successfully solved in the world
of J2EE application development were still
relevant issues in the world of RIA develop-
ment. We came to this realization back in
the days of RIA development with Flash,
Flash Remoting, and J2EE—a period of RIA
history that we’ll look back upon with the
same fondness and nostalgia as a C++ pro-
grammer has for 6809 assembly language.
	 Borrowing a subset of a collection
of design patterns advocated by Sun
Microsystems as the Core J2EE Pattern
Catalog, we first presented these patterns
to the Flash community in our book,
Reality J2EE: Architecting for Macromedia
Flash MX (Pearson Education, 2003). To
accompany the release of Flash MX 2004,
we presented the patterns in a chapter
called “ActionScript 2.0 Design Patterns
for RIA Development” in Macromedia
Flash MX 2004 ActionScript 2.0 Dictionary
(Macromedia Press, 2003).
	 As the RIA technology platform
matured from the design-centric
approach of Flash towards the declara-
tive programming model of Flex, most of
the motives for applying these patterns
remained. However, the Flex program-
ming model offered us ever more elegant
ways to implement these patterns.
Furthermore, some patterns that we
considered hugely valuable to Flash RIA
developers (such as the ViewHelper pat-
tern) became less relevant in the Flex RIA
world, allowing us instead to advocate
new Flex-specific patterns of our own,
such as the ModelLocator pattern.
	 At MAX 2004 we announced our deci-
sion to release the Cairngorm framework
as an open-source project for Flex; a deci-
sion that has led very much to its wide-
spread adoption within the community.

What Cairngorm Teaches
You
	 Cairngorm is a microarchitecture that
addresses three key areas that we have

3 • 2006 mxdj.com • 43

always tried to provide as best-practice
recommendations for our customers and
partners:
•	 Handling user gestures on the client
•	 Encapsulating business logic and

server interactions
•	 Managing state on the client and rep-

resenting this state to the user inter-
face

	 Cairngorm offers a microarchitecture
(collection of design patterns) that aids
us in consistently solving these recurring
design challenges.
	 As you read this series of articles, you
will learn the following:
•	 How the Front Controller and

Command patterns implement a
“Service to Worker” microarchitecture
for listening and responding to user
requests.

•	 How the Business Delegate and Service
Locator patterns interact in such a way
that you can reuse the business logic
and encapsulate it so that it estab-
lishes a clear contract between client
and server-side development teams,
independent of server-side technical
implementations such as web services,
Enterprise JavaBeans, ColdFusion com-
ponents, or even RESTful architectures
using XML over HTTP.

•	 How the Value Object pattern from
J2EE can collaborate with the Model
Locator pattern first implemented in
Cairngorm 0.99 to be an elegant strate-
gy for maintaining a stateful client with
a rich and cinematic user experience.

Current State of Cairngorm
	 Cairngorm is currently in version 0.99.
It never made it to a 1.0 release because
iteration::two became immersed in a trail
of acquisitions, first by Macromedia and
then by Adobe Systems. Furthermore,
with Flex moving towards a 2.0 release of
its own, the introduction of ActionScript
3.0, a number of improvements to the
underlying Flex application framework,
an exciting array of new services (includ-
ing Flex Enterprise Services), and the
evolution of the Cairngorm Committee—
now comprised of a committed core of
Adobe consultants and Adobe engineers,
as well as numerous community mem-
bers behind it—Adobe Consulting is
focused on aligning a comprehensive
Cairngorm 2.0 release that leverages the

underlying Flex 2.0 framework.
	 The core Cairngorm concepts remain
the same, however. Only the underlying
implementation changes due to addi-
tional thought leadership and best prac-
tices on how to leverage Flex 2.0 features
such as Flex Data Services and Flex RPC
Services within a Cairngorm application.
For those working with Flex 2.0 in Labs,
we will also make available regular alpha
releases of Cairngorm 2.0.

Note: In the final article of this series,

I explore the criteria you can follow to

decide when to use Cairngorm—and when

not to use it. We do not advocate for a

second that Cairngorm is the only way to

build Rich Internet Applications. Nor do we

even suggest that our best practices are

the only best practices. In fact, others may

promote best practices that seem to con-

tradict what Cairngorm suggests.

	 All we ask is that you first try to
understand the problems that Cairngorm
tries to solve before preemptively solving
them with Cairngorm. If you are learning
Flex for the first time and consequentially
building one of your first Rich Internet
Applications, I strongly suggest that you
become comfortable with the myriad
of new tools and techniques that the
technology and platform offer you before
complicating your learning curve with
Cairngorm.
	 This is not to say that Cairngorm is
complex. On the contrary, it is important
that you be confident and comfortable
building simple RIAs that do not require
the benefits of a technical architecture
such as Cairngorm before taking advan-
tage of the benefits that Cairngorm pre-
scribes.
	 Future parts of this series will ensure
that both seasoned and novice Flex
developers understand the RIA chal-
lenges that created the problems for
Cairngorm to solve. We want to explain as
clearly as we can, and with detailed code-
level examples, the elegant way in which
Cairngorm can help you solve them.

Where to Go from Here
	 The aim of this article was to intro-
duce you to the Cairngorm framework by
clarifying the ambiguity around the defi-
nition and usage of frameworks, why you
might use a framework, and the origins

and the future of the Cairngorm frame-
work.
	 Cairngorm is an architectural frame-
work that provides a suggested imple-
mentation of a technical architecture
upon which you can build your own,
more complex, application-specific archi-
tectures.
	 By basing your application on the
Cairngorm architecture, however, there
are some generic and fundamental
design challenges that you won’t have
to solve by yourself while leveraging
the benefits inside Flex, such as how to
handle user gestures in an elegant fash-
ion, how to handle server interaction and
business logic in an elegant and scalable
fashion, and how best to manage state
on a rich and immersive client applica-
tion.
	 I gave a brief overview of the engi-
neering discipline of software design
patterns and how iteration::two borrowed
those that were useful to us as J2EE
developers, and which are still useful for
our RIA development. Having an aerial
view of the technical architecture usually
helps developers identify recurring col-
laborations of design patterns. The con-
cept that such collaborations, known as
microarchitectures, exist is the foundation
of the Cairngorm framework.
	 When consulting, I often say that the
difference between theory and practice
is that, in theory, there’s no difference
between theory and practice. I depart
from the discussion of context and back-
ground of design patterns and microarchi-
tecture, and instead present Cairngorm in
terms of providing four key benefits:
•	 Maintaining state on the client
•	 Architecting the user experience
•	 Implementing feature-driven develop-

ment
•	 Invoking server-side services

	 You’ll get a hands-on feel for the ways
we leverage the Cairngorm framework in
application development, the problems
that Cairngorm solves, and the ease with
which you can consistently deliver highly
scalable, maintainable, and robust Rich
Internet Applications with Flex.

Introducing the Cairngorm
Store
	 The Flex Store application show-
cases the features of the Flex application

44 • mxdj.com 3 • 2006

framework. It demonstrates how to use various
layout containers, navigator containers, controls,
effects, data binding, the Drag-and-Drop man-
ager, form validation, and the History manager.
Furthermore, Flex Store articulates the com-
ponent-development model of Flex, showing
how to create loosely coupled components that
integrate through an event-driven architecture.
The Flex Store application is an excellent way to
become familiar with declarative layout using
MXML and business logic development using
ActionScript.
	 With the Cairngorm Store, I take this famil-
iar application and completely rebuild it as an
enterprise rich Internet application—an applica-
tion that is rapid, scalable, and maintainable—
through Cairngorm.
	 The Cairngorm Store borders on the com-
plexity of a rich Internet application that would
benefit from a Cairngorm architecture. I demon-
strate this tipping point by showing how, within
the rearchitected Cairngorm application, you can
add new functionality easily, more predictably,
and with significantly less development risk than
if you were to attempt to add functionality to a
non-Cairngorm code base.
The Cairngorm Store: Four Key
Challenges
	 Instead of an academic discussion of design
patterns we selected for Cairngorm, I will explain
the common high-level challenges that often
occur when developing rich Internet applica-
tions and how to achieve these solutions with
a Cairngorm development process. By describ-
ing the development process, I also explain the
various constituent design patterns used in the
Cairngorm framework.
	 A good technical architect first sees applica-
tion development as a solution to a business
problem, then as a system that realizes this
solution, then as a technical architecture for the
custom software in the system, and finally as the
detailed class-level implementation of that tech-
nical architecture.
	 The approach taken here in Cairngorm and
Cairngorm Store gives you clarity from 35,000
feet before a deep dive and race along the ter-
rain at the code level.
	 From a high level, there are four key chal-
lenges that the Adobe Consulting team faces,
whether building mortgage calculators, retire-
ment planners, online banks, single-screen
checkouts, full e-commerce applications, or inter-
active maps. These challenges are as follows:
•	 Keeping state on the client
•	 Architecting the view
•	 Driving feature-driven development
•	 Invoking server-side services

	 The challenges and requirements for the
Cairngorm Store are no different.
	 The client presents the products to sell to the
customer, the shopping cart remembers what
the user purchased, and the user must complete
multipage application forms during the checkout
process. Throughout this entire process, your
application must maintain state on the client.
	 The single-screen user experience has a
number of different on-screen components. It
has both graphical and list-based views of the
products for sale, detailed product information,
a shopping cart that the user can add to or drag
products to, and a series of forms that the user
must fill in to fulfil his or her order. You must
architect the view.
	 There are a number of features that users
demand in the application. The users must be
able to do the following:
•	 View all products and get detailed information

for any selected product
•	 Add products to, or remove products from,

their shopping cart
•	 Purchase products in their cart
•	 Proceed to and complete a checkout process.

	 These features drive your development.
	 Finally, the products that the application sells
change as inventory changes. Your application
must fetch product information from a server-
side infrastructure capable of pulling products
from an inventory database. Furthermore, when
customers place orders, your application must
persist the orders in enterprise systems by com-
mitting these orders to a database or a system
such as SAP. Your application must integrate with
and invoke server-side services.
	 As you can see, the Cairngorm Store—
though unique in its business domain, product
selection, and look and feel—is just like any
other rich Internet application when studying it
against the four key challenges.
	 In this article, I take a look at the first of these
four key challenges: keeping state on the client.

Keeping State on the Client
	 One key shift in mindset when you move
from the development of web applications to
rich Internet applications is that the client is
stateful.
	 Web application developers are all too famil-
iar with the stateless request/response approach.
Therefore, they have created various approaches
for maintaining state on the client. Whether you
continually stuff data into an HTTP request as
the client and the server exchange pages, or you
use URL encoding or cookies to keep some lim-
ited state information on the client, or you take

advantage of abstractions of these features such
as J2EE sessions, the typical application develop-
er’s is to maintain state on the server, and make it
available to the client.
	 With RIAs however, web application devel-
opers can break free from the shackles of HTTP
request and response. No longer do you have to
concoct solutions for the stateless client because
the client is indeed stateful. If you have been
building desktop or rich-client applications with
technologies such as Swing or AWT, for instance,
you’ll shrug your shoulders right now because all
of this will sound all too familiar—it is.

Difference Between State and
the Model in MVC
	 Many developers are familiar with the con-
cept of MVC or Model/View/Control in applica-
tion development, and wonder where state fits
into this discussion. Quite simply, the state is the
model. As obvious as this may sound, it presents
some further common challenges to solve in the
implementation of the model in an RIA.
	 First, resist the opportunity to scatter state
all over your application as strings, numbers,
Booleans, and all manner of other primitive
objects. It is not my purpose here to advocate
best practice object-oriented development.
Indeed, that you accept the benefits and practice
the principles of OO are almost prerequisites to
understanding this article.
	 However, I strongly advocate that the client
hold the data—as state, model, or whatever
you want to call it, as objects that have seman-
tic meaning. What is semantic meaning in this
context? I mean that if you sell fly-fishing flies
online, your object model should include “flies,”
“patterns,” “hooks,” and “hackles.” If you sell mort-
gages, your object model should include “prod-
ucts,” “rates,” “repayments,” and “terms.” If you sell
maps, your object model likely includes “routes,”
“waypoints,” “points of interest,” and “gas stations.”

Synchronizing Client and Server
State
	 One challenge is relatively unique to the
stateful client of a rich Internet application: The
state on the client usually reflects the state held
on the other side of the wire, in the server mid-
dleware. Let’s examine this design problem some
more.
In server-side application development, one key
challenge is that state often sits within two tiers
of an application architecture: the business tier
and the integration tier.
	 The integration tier usually contains databas-
es, mainframes, message queues, ERP solutions,
CRM systems, and other enterprise information

3 • 2006 mxdj.com • 45

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

systems that hold data on the objects and
process particular to a business domain.
	 In enterprise application develop-
ment, these systems are typically aggre-
gated and presented to users through a
middleware tier, also called the business
tier. Many solutions address some of the
challenges of keeping state consistent
across the two tiers. First of all, the rep-
resentation of data in these tiers may be
dramatically different. For instance, the
entities, relationships, views, and queries
that exist in a relational database solu-
tion must be mapped from a relational
model in a database to an object model
in the middleware business tier. You
can use technologies such as Enterprise
JavaBeans, Hibernate (H8), and ADO.NET
to map data across these architectural
tiers.
	 Irrespective of the solution chosen,
the application developer assumes a
great deal of responsibility in ensuring the
consistency of state across these tiers. As
soon as you keep the same information in
two places, there is a risk that changes to
it in one place are not reflected in another
place, or that changes in one place over-
write changes in another place. Suddenly,
the developer must care about concur-
rency, locking, transactions, rollback, and
other approaches for ensuring that the
model is consistent in these different
places in the architecture.
	 As RIA developers, you are abstracted
from the complexities between the busi-
ness and integration tier; your concerns
focus more on how to ensure that the
model in the business tier is consistent
with the model in the presentation tier.
	 You can achieve this most easily by
ensuring that you have a consistent
object model on the client and server, and
that you minimize the effort required to
keep these object models synchronized.

Introducing the Value Object /
Data Transfer Object Pattern
	 Whenever you want to represent
the value of things on the client, you
can do worse than to create classes
or objects that represent the val-
ues of those things. For instance, in
Cairngorm Store, one thing that you
must represent is the products in our
store. Each product has a number of
attributes: name, description, price, an
associated image for the detailed view,

and an associated thumbnail image for
the catalog view.
	 These value objects play a dual role
in a rich Internet application, however. In
addition to keeping the value of an item
on the client, they are useful structures
with which you can exchange or transfer
data between different tiers in an applica-
tion. In server-side development, consider
a strategy in which you query a database
using SQL, receive a result set, and then
transform that result set into a collection
of value objects representing the things
you have pulled from the database.
	 By passing collections of these value
objects between application tiers, you
insulate each tier of the application from
the underlying implementation of its
neighboring tiers. The middleware need
not care whether these value objects were
created from a SQL query, stored proce-
dure call, message queue, or web service
call. By reusing these value objects, you
decouple architecture by transferring data
between tiers as objects with business
meaning (“Products,” “Fish,” “Maps”) rather
than technical meaning (“RecordSets,”
“ResultSets,” “Data Sets”). This has led to
calling the Value Object pattern the Data
Transfer Object pattern instead.
	 We conceived Cairngorm before the
term data transfer object (DTO) became
popular, so I call the business objects
value objects or VOs.
	 For example, look at the VOs in the
Cairngorm Store application, which reside
in the org/nevis/cairngorm/samples/
store/vo package:

class org.nevis.cairngorm.samples.

store.vo.ProductVO implements

ValueObject, Comparable

{

	public static var registered:Boolean

= Object.registerClass(“org.nevis.

cairngorm.samples.store.vo.ProductVO”,

ProductVO);

	

	public var id : Number;

	public var name : String;

	public var description : String;

	public var price : Number;

	public var image : String;

	public var thumbnail : String;

}

	 This is not rocket science. The
ProductVO is nothing more than a col-

lection of attributes that describe what
makes a Product a product. Whenever
you keep state on the client about
Products, keep it as instances of the
ProductVO. If the application must know
what the “currently selected product” is,
store that information on the client as
a ProductVO instance. If the application
needs to retain a list of the products in
a customer’s shopping cart, store that
information on the client as a list of
ProductVO instances.
	 Furthermore, if you have to transfer
products from the server (and we do, but
more on that later) or if you ever have
to transfer products back to the server,
transfer that data back and forth as value
objects. Others might say that you’re
using data transfer objects, because you
are. They’re the same thing, remember?

Keeping a Consistent Object
Model Between Flex and
Java
	 When you develop middleware, a key
artefact from the development process is
typically a well-defined object model. In J2EE
application development, there is often a
package of Java value objects already on the
server that correspond exactly to the value
objects required on the client.
	 In this case, the Flex server does
some pretty significant heavy lifting
for the application. If you want to pass
ActionScript value objects into Java, Flex
can automatically create the equivalent
Java objects on the server side for those
objects that you placed on the client
side. Similarly, as the Java middleware
returns Java value objects to the client,
Flex ensures that by the time the RIA uses
these objects on the client side, Flex has
already translated them into the equiva-
lent ActionScript value objects.
	 Even more powerfully, if the objects
are not just single value objects but com-
plex graphs of value objects, Flex does all
the work associated with traversing the
graph of objects—not only translating the
objects but maintaining the relationships
between objects. Thus, when you have
a ShoppingCartVO that contains a list of
ProductVO objects, and each ProductVO
contains a list of AddressVO objects (for
delivery and invoice addresses) and an
optional DiscountVO object, Flex ensures
that the composition of objects stays con-
sistent when passing it between the RIA

48 • mxdj.com 3 • 2006

client and middleware server.
	 To allow Flex to map between client-side and
server-side value objects, you must provide some
hints to the Flex server about the relationship
between the classes. In Cairngorm, you achieve
this by advocating that each and every instance
of a value object class contains the following:

public static var registered:Boolean =

Object.registerClass(“org.nevis.cairngorm.

samples.store.vo.ProductVO”, ProductVO);

	 This line ensures that a ProductVO class on
the client maps to the Java class ProductVO.java
that resides in the package org.nevis.cairngorm.
samples.store.vo.ProductVO on the server.

Using XDoclet2 with ActionScript
	 XDoclet2 is a java-driven ActionScript code
generator. Joe Berkowitz of Allurent created
a labor-saving, open-source project for creat-
ing ActionScript value objects from their Java
counterparts. You can find more information on
the project, including a link to the source code
on SourceForge, at www.allurent.com/joeb/xdo-
clet2.
	 To recap, value objects ensure that you do
the following:
•	 Adhere to the best practice of representing cli-

ent-side data with a meaningful object model
•	 Maintain a consistent object model on the cli-

ent and server
•	 Leverage the capabilities of the Flex server

to translate value objects between Java and
ActionScript as they “cross the wire” between
client and server

	 Getting data to the client that is consistent
with the server is only the first part of the prob-
lem. What do you do with the client-side data
and where you keep it to enable you to accom-
plish this task?

Binding the Model and View
Together
	 One of the primary reasons for wanting data
in the presentation tier of an n-tier application
is to display that data. Furthermore, the R in RIA
is about presenting data in a rich and immersive
way.
One of the unsung features of the Flex applica-
tion framework is the data binding capabilities of
Flex. Data binding allows two objects to act as a
source and a destination. Changes to the source
object are reflected immediately in the destina-
tion object. When the destination object is a
visual component and the source object is client-
side data, you suddenly have a powerful means

for ensuring that changes to the client-side state
are rendered to the user in real time. The user’s
view is never stale; the model (the client-side
state) is always notified by the view (the user
interface) if you have used data binding to bind
the model and view together.
	 At Adobe Consulting, we witnessed develop-
ment teams convolute solutions for updating the
user interface whenever the underlying model
changed. Furthermore, these teams became
tangled in a mess pretty quickly when display-
ing data in different parts of the view in different
ways. Let’s say you have a series of numbers that
have been updated on a server. Depending on a
user’s location in the application, this may cause
their table or graph display to update or update
data in a dashboard summary about key assump-
tions for a business. By refactoring architecture
towards keeping the data in a client-side model,
and leveraging data binding between this model
and the different view components, you elimi-
nate much of the complexity around this kind of
interactivity and responsiveness in an RIA.
	 Furthermore, we found that each developer
kept the client-side state he needed for his parts
of the application development (in his parts of
the code base). Consequently, when another
developer needed to use that data in another
part of the application, she would have to create
convoluted and complex solutions to ensure the
data was visible from more than one place.
	 Often we found that developers referenced
other data with long chains of component refer-
ences, such as mx.core.Application.application.
storeView.textualList.productGrid. Such strate-
gies are incredibly brittle to change—adding or
removing any components (storeView, textual-
List) would require that a developer update any
references to productGrid.
	 Additional strategies include passing data up
and down through MXML component instantia-
tions. Consider the following graphical represen-
tation of MXML components, where data is in a
leaf node of the tree and is required in another
developer’s leaf node. The only solution is to find
a common branching point for both leaf nodes
and then, from that branching point, pass the
data down through the component chain with
component instantiations, as follows:

<myView:MyComponent data=”{this.data}” />

	 Once again, this is a strategy that is incredibly
brittle to changes in the implementation of the
view. It leads to regular errors because it incor-
rectly passes data down the chain somewhere.
Debugging these errors is a laborious job of trac-
ing the component paths to confirm that data

has been correctly passed between components.
It’s a frustrating task.

Enter the Model Locator Pattern
	 Watching developers fall repeatedly into
these traps, the Adobe Consulting team con-
ceived the Model Locator pattern as a best
practice for Flex developers to adopt. The Model
Locator pattern is unique because it is not a pat-
tern we borrowed from the Core J2EE Pattern
catalog. Instead, we created this pattern par-
ticularly for Flex application development. Our
motivation was to have a single place where the
application state is held in a Flex application and
where view components are able to “locate” the
client-side model that they wish to render.
	 Our Model Locator pattern strategy encour-
ages the use of data binding so that view com-
ponents bind directly to the client-side state
held in the single instance of the ModelLocator
class. In this way, whenever the model is updated
in ModelLocator, all view components binding
to the model receive notifications (through the
underlying data-binding mechanism) and update
themselves to render the new model on the cli-
ent.
	 In Cairngorm, we provide a marker inter-
face for the Model Locator pattern, and in the
Cairngorm Store we have a single class that
implements this marker interface, org.nevis.cairn-
gorm.samples.store.model.ModelLocator.
	 As you take this opportunity to review the
source for this ModelLocator class, let me point
out a few examples of its usage. In the Cairngorm
Store, there is always a notion of the “currently
selected product.” This is the item that the user
has selected. The application stores an instance
of a ProductVO in the model locator, uses the
selectedItem property in the application to ren-
der the ProductDetails panel, and uses the prop-
erty to decide what to add to the shopping cart
when the user presses the Add to Cart button.
	 See the ModelLocator source in the following
entry:

public static var selectedItem : ProductVO;

	 You will learn how to use data binding to
ensure that the currently selected item always
appears in the product details view.
	 Additionally, through ModelLocator, you
can find the list of products for sale in the
Cairngorm Store from anywhere in the applica-
tion by storing an ArrayList of these products on
ModelLocator, as follows:

public static var products : Array; // con-

taining ProductVO objects

3 • 2006 mxdj.com • 49

	 Also notice how the application stores
constants in ModelLocator. In this appli-
cation, these constants allow you to track
the state of the application (there are
three possible states) as follows:
public static var workflowState : Number;	

//------------------------------------

public static var VIEWING_PRODUCTS_IN_

THUMBNAILS : Number = 1;

public static var VIEWING_PRODUCTS_IN_

GRID : Number = 2;

public static var VIEWING_CHECKOUT :

Number = 3;

	 Finally, you have a complex
ShoppingCart component that encap-
sulates all the functionality associated
with adding and removing items to a list
of items that the customer may want to
purchase. You stored the shoppingCart
instance on the ModelLocator and initial-
ized it within the ModelLocator in the
initialise() method.
	 Having all the attributes on the
Model Locator pattern as static attributes
ensures that the Model Locator pattern is
a simple implementation of a singleton.
You ensure, for instance, that one and
only one instance of a ShoppingCart
exists per user.
	 The single instance of ModelLocator
is initialized immediately when the
main application is initialized. In the
Main.mxml file (the entry point for the
Cairngorm Store) you have declared the
following method as a handler for the
creationComplete event on the main
Application tag:

<mx:Script>

<![CDATA[

 import org.nevis.cairngorm.sam-

ples.store.model.ModelLocator;

	

 private function onCreationCom-

plete() : Void

 {

 ModelLocator.initialise();

 }

]]>

</mx:Script>

	 This code ensures that all the client-
side state (such as our shopping cart)
correctly initializes when the application
starts.
	 Next, I’ll take a look at data binding
to the ModelLocator in greater detail.
But to whet your appetite, let me say
that when you create components that
rely upon client-side data rather than
adopt any of the convoluted strategies
that result in a brittle implementation of
the view, you can instead locate client-
side state by binding to the singleton
ModelLocator from any component in
the application.
	 By way of example, we have a
SideArea.mxml component in the
Cairngorm Store that contains the
ProductDetails and ShoppingCart
components. ProductDetails requires
the currently selected item, so that
it can display the name, description,
price, and image of the item the user
has selected. Because the currently
selected item is stored in ModelLocator
as an instance Product VO called select-
edItem, you can pass this item into our
ProductDetails component as shown
below:

<details:ProductDetails

 id=”productDetailsComp”

 width=”100%” height=”325”

 currencyFormatter=”{

ModelLocator.currencyFormatter }”

 selectedItem=”{ ModelLocator.

selectedItem }”

 addProduct=”addProductToShopp

ingCart(event)” />

	 The highlighted line of code shows
that within the ProductDetails.mxml file,
there is an attribute called selectedItem
that is an instance of a Product VO. You
have just used data binding (the curly
brace notation) to ensure that anytime
selectedItem on ModelLocator is updat-
ed, the ProductDetails view updates
accordingly.

The continuation of this article can be
found at www.macromedia.com/devnet.

Steven Webster is the practice director

for Rich Internet Applications at Adobe.

Previously, Steven was the technical

director at iteration::two, a world-lead-

ing Rich Internet Application consul-

tancy based in Edinburgh, Scotland.

Steven is the author of Reality J2EE:

Architecting for Flash MX and coauthored

ActionScript 2.0 Design Patterns for

Rich Internet Applications (ActionScript

2.0 Dictionary) and Developing Rich

Clients with Macromedia Flex with Alistair

McLeod. Steven speaks regularly at

conferences and user group meetings on

technical and business aspects of RIAs.

Steven is the core contributor to the

open-source Cairngorm project, a micro-

architecture for RIAs based on J2EE pat-

terns which was innovated by iteration::

two over a number of Flash and Flex RIA

developments.

Advertising Index

Advertiser index is provided as an additional service to our readers. Publisher does not assume any
liability for ommissions and/or misprints in this listing since this listing is not part of any insertion order.

	 Advertiser	 URL	 Phone	 Page

	 CFDynamics	 www.cfdynamics.com	 866-233-9626	 19

	 CfUnited			 39

	 Community MX	 www.communitymx.com		 23

	 EdgeWeb	 http://edgewebhosting.net	 1-866-334-3932	 5

	 Hosting.com	 www.hosting.com		 27

	 InterAKT	 www.interAKTonline.com/macromedia	 4031 401.68.19	 3

	 Intermedia	 www.intermedia.net	 1-888-379-7729	 11

	Macromedia Studio 8	 www.macromedia.com/go/8_studio8	 415-252-2000	 52

	 Stream57	 www.stream57.com	 212-909-2550x1012	 6

	 Vitalstream	 www.vitalstream.com	 800-254-7554	 2

	WebAppCabaret	 http://webappcabaret.com/jdj.jsp	 1-866-256-7973	 51

50 • mxdj.com 3 • 2006

	 Advertiser	 URL	 Phone	 Page

	 CFDynamics	 www.cfdynamics.com	 866-233-9626	 19

	 CfUnited			 39

	 Community MX	 www.communitymx.com		 23

	 EdgeWeb	 http://edgewebhosting.net	 1-866-334-3932	 5

	 Hosting.com	 www.hosting.com		 27

	 InterAKT	 www.interAKTonline.com/macromedia	 4031 401.68.19	 3

	 Intermedia	 www.intermedia.net	 1-888-379-7729	 11

	Macromedia Studio 8	 www.macromedia.com/go/8_studio8	 415-252-2000	 52

	 Stream57	 www.stream57.com	 212-909-2550x1012	 6

	 Vitalstream	 www.vitalstream.com	 800-254-7554	 2

	WebAppCabaret	 http://webappcabaret.com/jdj.jsp	 1-866-256-7973	 51

